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In this work, a teleoperation system consists of two planar SCARA 
manipulators is developed. The manipulators are constructed using basic low 
cost aluminum bars as well as cheap electronic circuitry and software. 
Modeling, system identification, individual control and teleoperation control 
are proposed. Finally, experiments are also performed to verify the 
effectiveness of the design. 
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1. INTRODUCTION 
 Teleoperation has been used in many applications ranged from military, medical, biological, 
industrial to space applications (Sanders, 2006), (Kapoor and Tesar, 2006), (Hainsworth, 2001), (Parrish et 
al, 2001), (Madani et al, 2008), (Sitti, 2003). These show that the researches in teleoperation are important 
and chalenging. However, mostly the design of teleoperation systems is difficult, tasks-specific and 
expensive to fabricate. However, for educational purpose, benchmarking and simple tasks a cheap and easy-
to-develop teleoperation systems are inevitably needed. On the other hand, many robots operated in the 
industry for instance SCARA, Stanford manipulator, articulated arm etc., do not have capability to be applied 
as teleoperation system. In the industry, beside automatically operated, robots sometimes have to undergo 
operator operated, for example by using teach pendant or joystick for specific tasks. Based on these 
situations, one may think that if we are able to compose a teleoperation system using two industrial robots, a 
cheap teleoperation system for industrial and laboratory purposes can be constructed easily. 
 In a common setting, a teleoperation system as shown in Fig. 1, the operator will exert force on the 
master manipulator which in turn, results in a displacement or velocity that is transmitted to the slave side as 
the order or command. In order to sense the manipulated object, some informations have to be returned from 
the slave side to the operator side. These information could be distance measurement, velocity measurement, 
force measurement or their combination. A teleoperation system as shown in Fig. 1 has to be able to 
“actuating while sensing” means while exerting force from its actuator, the force itself has to be acquired and 
sent to the other side either master or slave side. Unfortunately, a commercially fabricated robots for 
industrial purposes usually do not come with this feature. Thus they need to be further prototyped in order to 
have this capability. 

The main objective of this proposed research work is to design and implement such kind of 
teleoperation system so that it is possible to use the commercially available robots in the market as 
teleoperation system. Being its simple structure and design, since 1964 the SCARA robot has been widely 
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used in the industry. Moreover, due to its importance, many works have been done related to the SCARA 
robots especially in production and fabrication (Craig, 2005). In view of the above informations, in this work 
a pair of SCARA robot will be designed and prototyped in order to set up a teleoperation system. 

 
 

 
Figure 1. Illustration of a teleoperation system 

 
  
2. MECHANICAL DESIGN 
2.1.  D-H COnvention 

In this paper, the D-H convention (Denavit and Hartenberg, 1955) is used especially to find the 
forward and inverse kinematics of the robot. The design of the manipulators with the choice of D-H 
parameters is shown in Fig. 2, while the one developed in the laboratory is shown in Fig. 3. The D-H 
parameters in this paper are denoted as follows ��=  the distance from ��  to ���� measured along ��  ��= the distance from ��  to ���� measured along �� ��= the distance from ���� to �� measured along ��   ��= the distance from ���� to ��  measured along �� . 

 
 

 
 

Figure 2. Design of SCARA arm 
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Figure 3. developed arm in the laboratory 
 

 
 The base frame as shown in Fig. 4 is placed on the floor level and the Z-axis is placed parallel with 
the main support of the robot arm. On the other hand, the end effector is placed at the end and frame for link 
1 and link 2 is placed in the same plane as �� = 0. By doing this, the value of �� and �� can be zeroed. After 
the placement of the frames, the D-H parameters are shown in Table 1. The homogenous transformation 
could be obtained based on the four parameters as follows 
 

��� =  �	�	� − 
�	� −	�
� − 
�	� 0 0.24�	�	� − 
�	�� + 0.21	� + 0.16
�	� + 	�
� −
�
� + 	�	� 0 0.24�
�	� + 	�
�� + 0.12
�
0 0 1 0.27

0 0 0 1


 (1) 

 
where ���   is the transformation from 0th-- axis to 3rd-axis, 	�,	�, 
�, and 
� stand for 	�
��, 	�
��, 
���� and 
����, respectively.  
 
 

 
 

Figure 4. Placement of frame on the robot 
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Table 1. D-H parameters � ���	(rad) ���	(m) ��(m) ��(rad) 
1 0.0 0.16 0.27 �� 
2 0.0 0.21 0.00 �� 
3 0.0 0.24 0.00 0.0 

 
 
2.2  Interfacing Circuitry  
 To drive the robot arm, a low cost electronic circuit is built to interface the hardware and software.  
For angular displacement sensor, a multi-turn potentiometer is used. As the sensor is noisy, the voltage 
regulator and the anti-aliasing filter are proposed as shown in Fig. 5 and Fig. 6.  

The voltage regulator, as shown in Figure 4, regulates the voltage from a power supply to provide 
the multi-turn potentiometer a stable voltage ranging from 0 to 5 volts. A diode was used as a circuit 
protection is the power supply terminals were to be switched and the capacitors were placed to produce stable 
voltage output. 

As shown in Figure 6, an anti-aliasing low pass filter is used to filter out high frequency noise in the 
multi-turn potentiometer. Cut-off frequency of 15.9 Hertz is chosen for the filter. The first operational 
amplifier acts as a voltage buffer for the multi-turn potentiometer. This is to prevent from voltage side-
loading effect where the voltage reading will be non-linear with the rotation of the arm. The second 
operational amplifier acts as an active 1st-order filter. 

 
 

 
 

Figure 5 Voltage regulator using LM7805 
 
 

 
 

Figure 6. Anti-aliasing low pass filter with voltage buffer 
 
  
 For torque measurement, a current sensing sensor ACS714 from Allegro MicroSystems 
Incorporated is proposed. Using current, usually the torque of the motor could be estimated by using a linear 
function interpolation. Beside that the current could be used as a feedback loop for the controller.  
 For the actuator interface, a motor driver from Dimension Engineering, i.e., Sabertooth 2X12 driver 
is used. As each driver can support two motors, only one driver is necessary to drive a single arm. This driver 
is used along with the current sensor where the current sensor is connected in series with the motor. Both 
sensors and actuators are then connected to the NI-USB 6008 to interface with LabView from National 
Instruments that is used as the main controller.  
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3. MODELLING IDENTIFICATION AND CONTROL 
3.1 Parameter identification 
 In this section, the identification of electrical parameters of the permanent magnet DC motor is 
discussed. Firstly, the mechanical model is derived. Then the parameter identification is done using Matlab 
Identification Toolbox. The permanent magnet direct current motor model used in this work is depicted in 
Fig. 7. 
 
 

 
 

Figure 7. Permanent magnet direct current motor model 
 
The motor resistance, �
and inductance �
are identified by giving external stimulus at �
 while observing 
the current �
. If the disturbance torque �� is assumed to be zero then the fitting model can be derived from 
the motor model as follows 
 �
 = �� ���
�

����
�                                                                                    (2) �
 = ��
 − �
�.                                                                                    (3) 

 
 

 
 

Figure 8. Plot of the external voltage stimulus and the measured output 
 



      �          ISSN: 2089-4856 

IJRA  Vol. 1, No. 1,  March 2012 :  1 – 12 

6

Substituting (1) in (2) and rearranging we get 
 

��
��

=

����

��������	�����
��(�	������)
.                                                           (4) 

 
 Due to nonlinearity in the disturbance torque, �� , (3) will be no longer valid and become too 
complex to identify. To be easier, the motor is stalled, i.e., to set � = 0. Thus, the fitting model will be just  
 

��
��

=

�

����	�

.                                                                                            (5) 

 
Therefore, the motor will be excited with voltage stimulation to obtain the overall motor parameters. After, 
external stimulation is given to �
 and motor position, �  is measured. The fitting model is given by 
 




��
=

��

����������	�����
����	������
�
                                                              (6) 

 
 Unfortunately, the model is not expected to perfectly fit due to the disturbance torque at ��. Some of 
the examples of disturbance torque are gravity which in this case, is zero because of the arm design, and 
Coulomb friction. 
 
3.1.1 Motor Electrical Characteristics 
 As discussed before, the motor is stalled to make zero back electromotive force. By doing so, the 
motor resistance and inductance can be identified using a first order fitting model. Using LabView NI-USB 
6008 to acquire the data and identified using the Matlab System Identification Toolbox for identification, the 
model for electrical characteristics is obtained as follows 
 


�

��
= ���.���� �

�.������.���
 (7) 

 
where, �
 = 2.113 and  �
 = 0.115. 
 
3.1.2 Motor Mechanical Characteristics 
 After obtaining the electrical characteristics, the motor mechanical characteristic will also be 
derived as well.  
 
 

 
 

Figure 9 Current loop best fitting value, 89.96% 
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Figure 10. Fitting model for mechanical model 
 
 

 
 

Figure 11. Plot of the external voltage stimulus and the measured output 
 
 
 By using the same step, as shown in Fig. 10, the fitting for the total motor model is found to be 
unacceptable. This is due to the initial value is not being estimated well. To solve this, the motor position 
data is differentiated once using five points first derivative central method in order to get 
 

�

��
=

��

��������	�����
����	������

.                                                          (8) 
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Figure 12. Motor model best fit, 84.87% 

 
After doing the similar process, the identified model for the total system is given as follows 
 

�

��
= ���.���� ����

�����.�������.�
 (9) 

 
where �� = 153.846, obtained from datasheet, �� = 0.131,  = 0.918 and  ! = 14.418. 
 

 
 

Figure 13. Proposed cascaded control for motor position 
 
 
3.2 Robot Dynamics 
 From the kinematics of the arm as discussed before, the dynamics are given as follows 
 "����# + $%�, �&' = ( − )�                                                                                        (10) 

 
where u is the control input torque, )� is the torque due to interaction with the environment and other external 
forces, and "��� = *+� + 2+�	� +� + +�	�+� + +�	� +� , (11) 
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$%�, �&' = -−+��&�(2�� + ��)
�+����
� .  (12) 

where  +� = �� + �� + �� + �� + �� + %"� + "�+"�'��� + "���� + "���� + "���� +� = �� + �� + �� + +"���� + "���� +� = "����� + "����� 
 
with ��, ��, ��, ��, �� , "�, "�, "�,  "�, ��, ��, ��, ��  are respectively, the inertias, masses, and lengths of the 
respective links.  
 
3.3. Position Control  
 In this paper, cascade controller is demonstrated to control the position of the joint separately, i.e., 
only one joint is considered and the other joints are kept fixed to prevent it affected by Coriolis and 
Centrifugal terms. Cascade controller has advantages compared to single loop design. Few of the advantages 
are better disturbance rejection and faster response due to better response in the inner loop (Astrom & 
Hagglund, 1995) and (Visioli, 2006). 
 For the cascade control, the inner loop control is the current control loop while the outer loop is the 
position control of the joint. PID controller based on Ziegler-Nichols is designed based on the identified 
model and tuned using simulation software. LabView from National Instruments is used to implement the 
controller. For simplicity, only proportional gain is used in both PID controllers. The current controller is 
tuned to 2.3522 while the position controller is tuned to 0.32264. The gains are obtained from the MATLAB 
SISO Toolbox based on Ziegler-Nichols frequency response tuning. The results depicted in Fig. 14 shows 
that the position can be controlled well. 

 
 

 
 

Figure 14. response of the motor position 
 
 
4.  TELEOPERATION SYSTEM DESIGN 
 In this section the design of teleoperation mode is discussed. We are going to consider two identical 
SCARA robots (7) for both master and slave sides. For controller design simplicity, our teleoperation system 
either in the slave side or  in the master side is re-written as follows  
 

�

��
/0�0�1 = * 0�

−"�����2$%�, �&'�& − ( + )��3,                                                        (13) 
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where the external forces term )��  is coming from the direct interaction from the environment in the slave 
side or from the human force in the master side. It also reflects the interaction forces sent from the other side 
where the subscript d means that the information is delayed . For coordination control, it is necessary for the 
control law u as a function of the state from the other side. In this preliminary work, we only consider simple 
PID control for  both master and slave manipulators as follows 
 (� = 4���0� − 0��� + 4�� 5 %0��6� − 0���6�'�6�

�
+ 4���0&� − 0&��� (14) 

 (� = 4���0� − 0��� + 4�� 5 �0�(6) − 0��(6)��6�

�
+ 4���0&� − 0&���. (15) 

 

 
Figure 15. Teleoperation scheme 

 
 

 
 

Figure 16. Tracking response of the first link 
 
 

 The structure of the teleoperation system can be seen in Fig. 15. The controllers parameters 4�, 4� 
and  4� for both master and slave manipulators are respectively set to 5, 1, 2 for link 1 and 8, 2, 3 for link 2. 
As the master and slave may be located in a distance, the User Datagram Protocol (UDP) connection with 
approximately 1 second delay is implemented. The tracking results for the first and second link are shown in 
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Fig. 16 and 17 respectively. From the figures it is seen that in spite of position error and drift, the slave 
manipulator could track the master manipulator satisfactory.  
 
 

 
Figure 17. Tracking response of the second link 

 
 

5.  CONCLUSION 
  In this paper, we developed cheap teleoperation system consists of two identical SCARA 
Manipulator using basic items like aluminium bars and DC motors. Basic circuitry was also constructed to 
interface the hardware with software. After modelling and identification, simple position control was also 
performed. Finally, simple scheme for teleoperation system is designed and implemented. The experimental 
results showed that the design and control of our teleoperation system is effective. In the future, advanced 
scheme for teleoperation system is going to be performed. The analysis should be not only on the stability of 
the teleoperation system but also deeper into the transparency issue. Moreover, some nonlinear terms such as 
friction will be considered in the modelling.  
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