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From the point of view of classical mechanics, dag the equations of
motion for systems of coupled rigid bodies is relgdras a straightforward
procedure: once a suitable set of generalized euatas and reference
frames have been chosen, what remains is to edpely Lagrange's
equations or Newton and Euler's equations to obtdia differential
equations of motion. As the complexity of multiboslystem increases, the
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need for more elegant formulation of the equatibmotion becomes an
issue of paramount importance. Our primary focusoisthe kinematic
analysis of rigid bodies and serial manipulato@b@tic systems) using
simultaneously, both homogeneous transformatior4)(tatrices and Dual
Quaternions, for the sake of results comparisonst{complexity, storage
capacity etc.). This paper has been done mainly efducational and
pedagogical purposes, hoping that the scientifroroanity will finally adopt

and use Dual Quaternions at least when dealing mithibody systems and
specially robotics.

screw motion
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Symbols :

p,q, r : Quaternions, § ,S,: Dual quaternions (DQ),

q*: Quaternion conjugate,
. a

S :smg ), C:cos(3),

v, V', %, n, 1 : Vectors,

g, I : the dual factors,

“glnverse of a quaternionj~!: Inverse of a DQ
§*::Dual Quaternion conjugate , ®:Multiplication operator ,
(), (8),(B) : Angles, Amplitudes, T ,¢,d: Translations vectors,
[A]lLIRL 1], [ T ] Matrices,
EEndEeffector,

!

i,j,k:Unitary vectors,
W :Wrist

1. INTRODUCTION
A robot is usually designed so that it can posiiis end-effector with a three degree-of-freeddm o

translation and three degree-of-freedom of oriématvithin its workspace. Kinematic analysis stsdthe
relative motions, such as the displacement, velpeihd acceleration, associated with the links giveen
robot. Although screw theory based solution methualge been widely used in many robotic applications
the elements of screw theory can be traced to tr& of Chasles and Poinsot in the early 1800s. ¢/die
theorems of Chasles and Poinsot as a starting, d®otiert S. Ball developed a complete theory oéwsr
which he published in 1900 [18].

Throughout the development of kinematics, numernathematic theories [17] and tools have been
introduced and applied. Examples are the (4x4) lyggmeous transformation matrices introduced by Dieénav
and Hartenberg (1955) [1],Lie groups and Lie Algelfgelig, J.M [13], [15]) and quaternions and dual
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quaternions introduced by Yang and FreudensteiB4L®], also see Bottema and Roth (1979) [3] and
McCarthy (1990) [4].

This paper is organised as follows : Chapter Hfirces the concept of quaternions and dual quatesn
(DQ), in chapter Il using this concept and simo#tausly (4x4) homogeneous matrices ,basic elementar
transformations examples are treated while some emthreoretical background concerning their
corresponding centers of rotation and momentsvengn chapter V.

Kinematic equations :A) Denavit-Hartenberg convemtaind B) Jacobian matrix in dual quaternion
space are given in chapter V. We are concernedhapter VI with the kinematics of a planar RRR
manipulator, a3R wrist and a 6R Puma type robud fanally in the last chapter some important cosns
are drawn.

2. QUATERNIONS AND DUAL QUATERNIONS (DQ)
1) Quaternions or rotation representation

Quaternions were first discovered and describetheyrish mathematician Sir Rowan Hamilton in
1843. Indeed quaternion’s representation and axggeaepresentation are very similar.

Both are represented by the four dimensional vectQuaternions also implicitly represent the
rotation of a rigid body about an axis. It also\pdes better means of key frame interpolation aoesd't
suffer from singularity problems [7],[16].

The definition of a quaternion can be givengsn) or (s, x,y, z) wherem is a 3D vector, so
quaternions are like imaginary (complex) numbet$ wie real scalar part s and the imaginary vauaorm.
Thus it can be also written as# xi + yj + zk.

There are conversion methods between quaternigissaagle and rotation matrix.
Common operations such as addition, inner prodiatan be defined over quaternions.
Given the definition of;; andg,:
q1 =51 +x0 +y1j + 2.k or gy = (s, my)
G2 = Sz + x50 + yoj + 2,k or q; = (52, my)
Addition operation is defined as:
G+ Gz = (S1+ 52, My +my) = (51 +8,) + (01 +x2)i + (1 +y2)J + (21 + 22)k
dot (scalar, inner): product operation( .) as:
q1-qz = S1.S; + my.m,
Quaternion multiplication is non commutative, busiassociative. Multiplication identity elementdefined
as(1,(0,0,0))
We can also perform the multiplication in the im@gly number domain using the definitions:
iZ :]'2 — kZ =-1
ij=k, jk=i, ki=j
ji=—-k, kj=-i, ik=-j
Equations 1) to (12) state the definitions, rules and properties @fldaternion algebra.
Quaternion multiplication®)is defined as:

|q1®q2 = (51.52 —my.Mmy,s;. M, + Sp;.Mmy + m, Am2)| (1)

Each quaternion has a conjugateand an inverse (except zero quaternion) defined by:

q" = (s,—m) 2)
1\2 ,

w) @@ %0

Where ||q|2 = s+ x°+y*+2°=q®q" = q'®q

and an inverse &= (

Rotations are defined by unit quaternions.Unit gu@bns must satisfly| = 1

Since multiplication of two unit quaternions wikkla unit quaternior\ rotations can be combined into one
unit quaternion cg = gr1.0r2 Or3----0rN

It is also possible to rotate a vector directlyusyng quaternion multiplication. To do this, we mdsfine 3D
vector V = (v, vy, v,) that we want to rotate in quaternion definitiorggs= (0,v) = 0 + v, i + v,j +

v,k .The rotated vectoV’' = (v,’,v,’,v,") can be defined ag,, = (0,v") =0+ v,/ i+v,/j+v,'k

IJRA Vol. 1, No. 1, March 2012 : 13 -30



IJRA ISSN: 2088-8708 a 15

Noting that, in quaternion rotation equatigg® = g; (For unit quaternion).So, rotation @f by

quaterniong, can be calculated as:  |q, = 4;®q,®4z' = ¢z®q,8q; | (3)
And two rotations can be applied to the ve&tasuch as:
la; = Pr®(q:®q,®q5)®pz| (4)

cr = pr®qr which means: q,, = cz®q,Qcg?

Whereqy andpy are rotation quaternions anglis the combined rotation quaternion.The equation
implies that vectoV is first rotated by the rotation representeddayand thenpy.
Thus, quaternioqy, that defines a rotation about (around) the axdenoted by the unit vectoa,, a,, a,))
of an anglex could be written as :

qr = coS % + sin % (ayi+ ayj + azk) (5)

qr = — qr =rot (a,d) = rot (—a,—ad)

2) Dual quaternions : To represent rigid transfornreatio

Dual Quaternions (DQ) were proposed by William Klog Clifford in 1873 [ 6 ] .They are an extensidn o
quaternions. They represent both rotations andlatians whose composition is defined as a rigid
transformation. They are represented by the folgvéight dimensional vector :

(6)

=G M) = (55,25 % Ve 2) = (3, %,9, %)

G=q+eq.=s+xi+yj+zk+e(sg+x.i+yj+zk)

Dual quaternion multiplication is defined by :

4194, = ¢,®q; + 5(Q1®Q25 + ‘hg@‘h) ;with € =0 (7)
¢ being the dual factor.

The dual conjugate (analogous to complex conjudat@gnoted by:

d=q-—¢q. (8)

This conjug_ate operator can lead to the definitibthe inverse ofg which is :

gl=1=2~= % - e% , (a dual number (q = 0) has no inverse )

[4®37'] = (q + £q.) (3—6—) =——fg—+te—=

A second conjugation operator is defined for D@8 the classical quaternion conjugation and reotied
by: §* = q* + q; where conjugation of dual and non-dual quaterpiarts satisfies eg2|.

Combining these two conjugation operators will léathe formalization of DQ transformation on 3D
points. Use of both conjugations grcan be denotegl'.

Using definitions (2), (6) and (8) we finally have:

EI\* = (S: =%, =Y, =Z, —Sey Xe ygrzs)| (9)
DQs naturally inherit some properties of regulaatgmions, like:
q = —4 (The same transformation representation)
It is well know that we can use dual quaterniansepresent a general transformation subject to the
following constraints :
The DQ screw motion operatdt= (g, q,) must be of unit magnitude:
1gl = |~§| = (g1 +€q01)* + (g2 + €q02)* + (g3 + €G03)* + (@4 + £G04)* = 1
This requirement means two distinct conditionsanrstraints:
{ ai +ai +a3+qi=1
91901 + 92902 + 43903 + q4qos = 0
Which imposed on the eight (8) parameters of aeg#rDQ, effectively reduce the number of degree of
freedom (8—2) = 6 ; equivalent to the degree of freedom of &me rigid body in 3-D space.( See
Appendix II: DQ multiplication )

Robot Kinematics Using Dual Quaternions (Mahmoudi&3oni)
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2-1) Rotations
DQ transformation formula is defined as a serieB@fmultiplications which is similar to quaternion
transformation; e@3):

3 = 8:®38,87", = ([4:®3,)®7",, = 4:®(8,87",) ; associativity|  (10)

For rotation: DQ represents only a 3D rotatiap € 0, g = §=q = R), it can be used to define a
rotation of a 3D vecto = (v,, v, v,), ¥ can also be defined as a DQ of the form:
g, =1+ e(vxi +v,j+ vzk).
Rotation ofv by §, can be denoted by €40) whereg,’ represents the DQ form of the transformed vector
¥ = (v, v’,v,") and can be also represented as:
G, =1+e(v/i+ v,/j+ v,'k).
Sinceq, = 0, by def(9) and2):
§"=q" and
4®4,84" = q®4§,®q"* which can be expanded to:
Gy, = q® (1 +e(vi + vj+ vzk)) ®q”
=q®q" + £q®(vyi + vyj + v,k)®q"
=1+ eq®(vxi +v,j+ vzk)®q*
=1+ e(v/i+ v,/j+ v,'k).
Finally, comparing these results, we finally have:
(vi + v,/j+ v,'k) = q®(v,i + vj+ v,k)®q"

2-2) Translations
DQs also represent translation; a DQ definedjas: 1 + % (txi +t,j+ tzk) corresponds to the translation

vector T = (txi +t,j+ tzk) which could symbolically be noted T. So gy =1+ eg
The translation T on the vectaf can be computed by, = §:®4,R4;
So fortunately using dg®) we havej; = §r = 1 + eg
Then
& &
3 = 4:®3,®7; = [1+ S (Gt + t,5)| ®[1 + (vl + vy + v,K)|@ [1 + S (Gt )+ t,k)]
=1+e[(ve+ )i+ (v, +t)j + (v, + k|
Which correspond to the transformed vector:
V= (v +t)i+ (v +t,)j+ (v, + t)k

2-3) Combining rotation and translation

Transformations represented by DQs can be comliimedneDQ (similar to quaternions combinati@t)).
Assumingp andq are two transformation DQs agg is the position vector DQ.

Their combined transformatiancan be applied t§,, :

|4, = p®(7©3,87")8p" = H®7)®(3,)®(7'®F") (11)

¢ =pR4 = §, = (Q®q,R¢"

It is very important (vital) to notice that the mdsner transformation of the equation is appliest fwith an
inside to outside manner. In eq (14)is the first transformation followed by the secamdp.

The composition of unit rotation D@z = g , and a unit translation DQ:

Gr = 1+ e(ted + t,j + t,k) will give:

Gr @ = (1 + % (tei +tyj + tzk)> ®qr = qr +§(txi +tyj + t,k)®qp (12)

So any unit DQ§ = q + £q, can be separated to its translation and rotat@mponents§ = q + q, =
Gr + 5 (ted + ty) + k) ®qr = |R + e% (12 A)

. . TR, - R*T
Its inverse is(R + ) T=pRp" - e
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Rotation is represented by the non dual pag; = R , and with a little quaternion math it can be gav
that translation §; can be represented By,.q*

& . . * . .
&qe = > (txl +t,j+ tzk)®qR = 2q.Qqf = (txl +t,j+ tzk)
= 2q.Qq" = (t,i +t,j + t,k)
If the translation is applied first: g=R+ eRZ—T (12 B)

Its inverse being R + sRZ—T) =R - eTf

NOTE : From now on, and for more concise and compaitingr we will be using the forms
(12 A) or (12 B) implicitly using the operator® ).

3. ELEMENTARY EXAMPLES
A) Pure rotations:

=R —(Coéo- G sin? 2 sin? e sing) =
a=R= 2 4 2 4 2’2 222_0r
Observing that: p” + n? + n? = —+—+ - =1 we can confirm that this transformatiofig. 1) is a
genuine rotation about the 3-D arislts counterpart in matrices language is:
3 i 5cos6 V3(1-cosf)  V2sin6  V3(1-cosh) n V2sind
8 8 8 2 4 4
[R]= V3(1-cosf) | V2sinb 1, 7cosf (1-cos6) _ Vesind
8 2 8 8 4 4
V3(1-cosb) _ V2sind (1-cos8) + Veésind 1 + cos@
4 4 4 4 2 2
T
4

(Fig. 1)

Writing this motion in a matrix form will take us few pages of calculus (manyTRTonjugations
techniques needed) and a few hours of labour bewdhie eventual errors. We could also use axisleang
method, Rodrigues formula or the conversion teamifrom quaternion to matri3ee (Appendix | ),for
DQs into matrices /or matrices into DQs. .Matfaograms for computing such conversions have been
made. We can thus easily check matrix [R]. See also Appendix V( its 3x3 uppeft Imatrix)

Comparing the two formats of this transformation:

*Quaternion formulation is more compact; only faarms would describe the motion clearly (Amplitdde
and orientation :rotation axis) using general geometry projection techniques.

*Three lines and three columns or nine ‘confusitegins compose the 3 by 3 matrix and must satigt(R)

=1

*Quaternions offer a more intuitive frame for usiagd understanding the effects of three-dimensional
rotations because the axis and angle of rotatipeapexplicitly in their definition.

The rotation axisn could be shifted from the origin O to any othesided position using the applications
(see below) : 1), 2) or 3)

B) Planar movements (displacements):
1) A rotationR followed by a translatiorf applied to the vector g, = [1 + £(0,1,0)] :

Robot Kinematics Using Dual Quaternions (Mahmoudi&3oni)
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4, = (R + gtR) dy (R + %tR)
Ex: rotatev an angle® about thex-axis, and then translate (displace} it (0, d,, d,)
(R+2tR) = [((c, 5,0,0) + > (0)) +21(0,d1,dy) (e, s, 0,0)]]

= [(C, 5,0,0) +§(0, cdy + sd,, cd, — sdl)] =q; (13)
And finally: ¢, = (R +£tR) 4, (R +5tR) = 1+5(0,2d; + 2l cos 0, 2d, + 2I'sin 0)

0 0
=1+e¢ <d1 + L cos 9) And v' = <d1 + L cos 0) (b1)
d, + lsin6 d, +lsin6
Using matrices (classical method):
1 0 0 0\ ,0 0
>_— _[0 cosf —sinf d; 1Y _(di+lcos8
MIP=7"=1" Gno coso d, \o) "\ dy+ising | T (b1)
0 O 0 1 1 1

2) The same translatidrfollowed by the same rotatidh applied to the same vectgy :
€ ~ (5
(R+2Rt)a, (R+ZRt)
(R+£RE) = [(€5,0,0) +£(©) +2((c,5,00) +£(©) (£ 0. d1. ) )
=[(c,5,00) +2(0,cdy = sdy,cd, + 5dy)| = 2 (14)

And finally the result is:(R + §Rt) Gy (R + gRt)* =
=142(0,d,cos6 +1cos® —d,sinf,d, sin + [sin@ + d, cos§) (b2)
2

Checking the result using the classical method :

1 0 0 0 0 0
—»_ [0 cosf —sinf cosfd; —sinfd, l|_|dicos@ +1lcos6 —d,sinb
MV=10 sing coso sinfd, + cosfd, |\ 0] |d,;sinf +1sin@ +d,cosh = (02)
0 0 0 1 1 1

3) The same rotatioR about a poin€ (a short cut for: about an axis getting througand parallel to the
axis of rotation) .Sed-ig. (2)

. £ £ £ o5 £ £, » o
) q=(1+§d)R(1—§d)=R—§Rd+§dR=R—E(Rd:dR);
(—d) is the displacement that takes the point C to tiggroof the fixed frame and d ) its inverse, (which
is equivalent to the conjugatioRM T~ technique). It has an inversg&' + ;‘g (R'd —dR")
Same example as 1) and 2)a pointe plane(y, z); d= (0,y,z)
Thus we havej = [(c,s,0,0) + £(0,0, zs, —ys)] = §s= § 43 a rotation abou€x axis|l to 0 (15)
4.v.q" = [(c,s,0,0) + £(0,0,zs + cl, —ys + sD][(c, —s,0,0) + £(0,0, zs, —ys)]
=1+ £(0,lcos8 + zsinf + 252y, lsind — ysinf + 2s%z)

¢}

Knowing that 2s2 (E) = 1 — cos@ ; thus the rotated vector will be:

0
v = ( lcosO + zsin@ + y — ycos 9) (b3)
[sinf — ysinB + z — zcos6O

This result could be checked using conjugatiorricesT MT ! : translate the point to the originO apply the
rotation M = R and retranslate it back to its initial position.

IJRA Vol. 1, No. 1, March 2012 : 13 -30



IJRA ISSN: 2088-8708 a 19

0
lcosO + zsin@ + y — ycos6

-1 —
TR v = [ging — ysinf + z — zcosH < (b3)
1
Z 0
A C
' Z
! v R=
L B=1
p— Y
/,/’ 0
»
X X
Z 0
A Cl
- z
! v R =
L B=1
p— Y
/,/’ 0
»
X X
Fig (2)

We can observe that our three precedent exampiédd be all considered as planar displacementsar(yth
z) plane shown ifrig. (3) Letd, andd, denote the coordinates of the originddthe moving frame M in the
fixed frame F and denotes the rotation angle of M relative to F. Tligese planar displacements can be
represented by the following planar dual quatersippn

G = (01,00, 0) + (0,06 G) © Wherech = cos0/2); o, = sin@/2); and &= 0a = s = G = 0 : Such that
for :

*Example 1) :d,= d; andd,=d,; g; = d, cosp/2) +d, sin@/2) and g = — d;sin(0/2) + d,cosP/2)

*Example 2):.d, = d, cos@) — o, sin@) and d = d, sin@) + d, cosP) ; ;= (cd; — sd,) and

0= (cd, + sdy)

*Example 3) d, = y(1—cos(#)) + z sin@) andd, = z(1—cos(8)) — y sin@); o7 = 2zs and Qg= —2ys

They can be considered as a set of homogeneoudirates that define the image space of the thraie@ m
planar displacements.

Note 1: As a matter of fact these three elementary plamasformations (1 , 2 and 3 ) could be applied to
any vecto™N = (0,y,z J belonging to the plane yz.
Note 2 : The rotation R could be applied around the y-axidesMN = (x,0,z § and center C belonging to

the plane xz or R around the z-axis wid&/ = (x,y,0 } and center C belonging to the plane xy.
Note 3: The moving frameNl) does represemtny rigid body firmly attached to it.

Robot Kinematics Using Dual Quaternions (Mahmoudi&3oni)
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o] (F) y

Fig. 3. Planar transformations

4) General Screw Motiors(without displacements or through a fixed center C ) :

A screw motion is a rotation R around an amishrough the center Gollowed by a translation (or a
translationt followed by a rotation R around the same axishgither ((12 B) or (12 A); such that: the
vector translation t = (t,,t,,t,) is || to the axis of the rotatiom ; (R = (c,sn)). We have using

quaternionsS$ = R + gRt =R +§tR = [(c, sn) +§(—st, ctn)]
Using dual quaternions DQ we have :

2 2 2 2
[(cosg,nx sing,ny sing,nz sin g) + % (—st, ctn )] = [(cos g, nsin g) + g (—st, ctn )] (16)
We can notice that only one line is sufficient az@htains explicitly all the informations while ax@)
complicated matrix is needed to describe this gerssrew transformation.
To conclude; assume some oriented Tiéen 3D space (as an axis of rotation passing through the pdyt
the solid (the cube ifrig. (4)) must undergo a screw motion ):That is it musat®tan anglé around the
rotation axis and simultaneoughanslate the distance(parallel to the same axig ).

R 7] 6 7] 6 £
S = [(cos—,nx sin-,n, sins,n, sin—) + 6(0)] 1+ > [(nxt, nyt, nzt)] =

5l

Fig. (4) General Screw Motion

This figure illustrates well the “Theorem of ChasteEvery rigid body motion can be realized by a riotat
about an axis combined with a translation parattethat axis”.

Now the question to be asked is: Are applications 1) ,2) and 3) screw motions like 5) ?, and the
answer is yes indeelhey are all rotations about some axis combinet tkanslatiort = zero.

4. CENTERS OF PLANAR RIGID TRANSFORMATIONS AND THEIR M_OMENTS :
a) Center of a transformation using matrices :
A center of a transformation is the unique point I€ft unchanged after the transformation [ M] :
We will have for the example 1): [ﬂll=7i [R]
The coordinates of the center of transformatiem@ defined by the well known equation:
X
(R—-1 )f =—d Let¢ =|Y ;be the Cartesian coordinates of the centiett (@
Z

IJRA Vol. 1, No. 1, March 2012 : 13 -30
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Using Cramer’s method or any other techniquestihation to this equation system is (b 0) :oT‘1 =

Xl = 0
(1-cosB)d,—sinbd,
Yl -
2(1-cosB)
sin 0d,+(1—cos 0)d,
Z1 =
2(1-cos8)

Xl = 0
) . Y, = di _dy cos(6/2)
Using half angles we haveoC, = |1~ 2 2 sin(6/2)
7. = dy cos(6/2) dap
17 2 sin/2) ' 2

Example 2). Compared to example 1) : the same translafiéoilowed by the same rotation R

M = [R] d
Using the same technique to find the center osfaamation , we will haved # 0)
X2 = 0
v = (1 —cos®)d; —sinfd, (cos®—1)d; —sinfd,
oC,=|?%" 2(1 —cos ) a 2(1 —cos @)
_sinfdz + (1 —cosf)d, sinbd; + (cost — 1)d,
2 2(1 —cosB) a 2(1 —cos )
Xz = 0
=% _dzcos(6/2)
Again using half angles we can haveC, =| 2 2 sin(6/2)

ﬂcos(@/z) _ d_2
2 sin (6/2) 2
a-bis) Centers of rigid transformations using dualguaternioms
Example 1):
61\1 = [(C, S, 0,0) + % (0, Cdl + Sdz, Cdz - Sdl)]
The center of transformation is the DQ vector lefthanged after the transformation :
dc =1+-(2x,2y,22)

then §;. §e1- G1 = Gr
Q- G T = [(€5,00) +50,cds + 5dy ey = 5| [1+5 (22, 29,22)] [ (e, =5,0,0) + 5 (0, cdy +

sd,, cd, — sdy)] = [1 +§(2x, 2y, ZZ)]
We will end up by a system of equations that cdigldolved using the usual techniques and the soligi:
Xl = 0
v - d, d, cos(6/2)
oC,=|"" 2 2 sin(8/2)
_dy cos(0/2)  d,

LT3 Sn@) 2

Xz = 0
_ _ﬂ_d_zcos(e/z)
The same work can be done for the example af; = 2 2 sin(8/2)

ﬂcos( 6/2) _ d_z
2 sin (6/2) 2
b) Moments of vectors Let us calculate the moment of any vectorop , with the point P belonging to

the G- axis , with respect to the,@xis : 1 = op AT = (oC + Cp ) AT

0
a_dpe |1 i,
Example: my =(oc;+cip)Ai=|2 25 A|0=]| 25" 2
dicy B2 0 (-4, dec
2s 2 2 2s
x 0
_d_de |1 a4
Example 2) my; = (oc, +p)Ail=| 2 2sA|0=[2s 2
e d2 4, dac
2s 2 2 2s

Multipluing these two vectors by the quantiin 9/2 will give us exactly the dual parts of the duadnzr
quaterniongj; andg, respectively :

Robot Kinematics Using Dual Quaternions (Mahmoudi&3oni)
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0
example 1) my sin(9/2) =1/2| dyc +d,s
—d;s + d,c

0
example 2) m; sin( 3/2) =1/2|dyc —d,s
dis +d,c

example 3)

The most important thing to notice at this steggthat if we are given a planar dual quaternitike G, or

4, , we can instantly notice its orientation a®ignd its amplitude from the rotation quaterniopgagd then

considering the dual part of the planar DQ anddilg it by sin 9/2 , we will have the vector moment :
1 - — 7

S/, (xt,y7", zk)

We can then get easily the coordinates of the foeatters C of any planar transformations ) Hyisg the

equation:

— d —
m=opAn=

op = (9¢ +cp) = ~5.

So for our examples 1) and 2) the planar quatesnitescribing the motions are all of the form :
g=1(c,s5,00)+% (msin%,) (17)
In the case of a planar dual quaternion, we caidisapead all the necessary informations about the

transformation: A rotation of amplitudeabout an axi® keeping its orientation and passing through a
—(mMAR)
nz

fixed center C defined by¢ =
Thus applying both displacements components al&@mst || n and a planar displacement d: (t +d )
simultaneously; the dual quaternion representirgstrew motion is simply :

G=38=/(csn) +%(t+ d)(c,sn) =

& & & &
(c,sn) + [5 t)(c,sn) + E(d)(c,sn)] = (¢,sn) + [5 (—st,ctn) + 7 ﬁs)] =
(c,sn) + S;(—st, ms, ctn) (18)
This is the general representation of a screw mafioits counterpart in matrices;see AppendixV) :

A rotation R = (c, sn) followed by a translation along then-axis being displaced to a new positﬁ
defined by its momenti w.r.t to the origir0 and C being enabled to translate the guantityt along the

axis of rotation with given amplitude (or a given pitch).The pitch of this screw motisrp = %ﬂt
Some remarks SeeFig. (5)
S = (cos2 + singﬁ) +: (—t sin2 + sinZmi +t cosgﬁ)
2 2 2 2 2 2
- If6=0:q=1+-t Apure translatiort
- t=0,m=0:4=(csn) A pure rotation of angle around then -axis through the origir0 ,
p=0
- t=0,m: A pure rotation of anglé around an axis parallel tothrough the centef .p = 0
- m=0: Apure screw motion about the arishrough Owith pitch p = %"t. n =%"t

- t,m: A general screw motion about the aigrough a fixecpoint Cwith pitch p = %"t. n.

[R.d]

/—\ux
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5. KINEMATIC EQUATION OF SERIAL ROBOTS
A serial robot is a sequence of rigid links conaddby joints to form a serial open chain. One end i
fixed to the base. The other end is equipped withead-effector. The joints are generally powered an
designed to control the position of a link relatteeits neighbour. The number of actuators needetkfine
the configuration of the chain is called its degoédéreedom (DOF).
For serial chains, DOF is equal to the numbepioit§ in the chains, counting the DOF of compouidts.
A) Forward kinematic model in dual quaternion space
To derive the forward kinematic model (FKM) of aiaklink manipulator, the standard Denavit-
Hartenberg convention that uses four parametersvitkedy been used.
These parameters_,, a,_;, ¢ and @i are the link length, link twist, link offset angint angle,
respectively A coordinate frame is attached to each joint tedeine DH parameters.
Zi axis of the coordinate frame is pointing alohg totary or sliding direction of the joints. Hagiassigned
coordinate frames to each link, the transformabetween two successive franfés, andF; is described
with the following rotations and translations (€ral989):
1) Translation along axis;,_, of a distancel;: Trans(z;_, , d;)
2) Rotation about axig;_; of an anglé; :Rot(z;_4, 9;)
3) Translation along axis;_; of a distancey;_,: Trans(x;_4,a;_1)
4) Rotation about axis;_; of an angley;_;: Rot(x;_1,®;_1)
Similarly, in the dual quaternion space, the trarmshtion between these frames is obtained by
multiplication of the 4 dual quaternions correspagdo each transformation:

qi—l,i = qrot(xi—l ’ ai—l)qtrans (xi—1: ai—l)qrot(zi—ll Hi)qtrans (Zi—l ’ dl.)

The subscripts “rot” and “trans” indicate whethiee transformation is a pure rotation or a puresieion,
respectively.In these cases, the dual quaterniansiaplified. For a pure rotation, the translati@ttor is 0
and thusq,,; = q,.:- FOr a pure translation, the rotation quaternierihie identity and henc@;,q,s =

t
1+ ¢e=-
2
The most important thing to notice at this stagthag this multiplication corresponds to the muitation of

two screw motions: the first one around,_, axis with angle(6,,) and translation t; = d; and the second
one around;_, axis with angle(o;_,) and translationt, = a;_4

The FKM can be then calculated for an n-link roasit

4 = qo1 912 - Qn-1n
The inverse kinematic model (IKM) could be perfothte evaluate joints variables.

B) _Jacobian matrix in the dual quaternion space
For any robot manipulator with n joints, the kingima@xpression that relates the end-effector vefogictor
X’ to the joint velocity vecto' is given by the well-known relationship:

X =]©)6
Where the Jacobian matix9) is given analytically by J () = Z_Z

In the dual quaternion space the relationship besorg = J(q)0’
Now the Jacobian matrix relating the joint velooigctor®” and the time derivative of the dual quaterrgon
is given analytically by

a1
a2 dq, dq,
dg d Zi do, de,
J@=-2=571, = : : ; (8 X n) matrix
qs 18, 18
q; do, de,
qs

Whereq = [q1 q; 93 9.]7 and qo = [q5 96 g, qs]”, with g andq, being the components of the dual
quaterniory = q + £q,.

Robot Kinematics Using Dual Quaternions (Mahmoudi&3oni)
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6. Applications:

1) Consider glanar manipulator RRR in its home position: (see Appendix I1);: DQ-MdikComputation)

I I s

P
S ©
c1 Ccy C3 ¥

L

Fig. 6 Home position

Link I : This last link rotates around thg;-axis an anglé, the center of rotation has the coordinates:
(0,1; + 1,,0)T (Fig.. (6)) , while the end effector (wrist ) is a0, I; + I, + I3,0)T

Using (see Example 111-3), the dual quaternjogy:

Gas=10c¢500)+¢e(0,zs,—ys)] =R +§(O, 2n s ) = R+¢ (0, m s ) with m being the moment 0OC;
= (0,y,z) w.rt tothe axis Ox .With x=z=0 and Y=+ l,,we haveq 45 .7; = [(c3,53,0,0) +
(0,0, —(L; + L)s)I1+e(0, (L, + 1, +15),0)] =

[(cs,83,0,0) + (0, (I + 1, + I3)cs3, 1355)] and then multiplying by the conjugatg;;* we will end up by :
(using all along these applications the usual trggoetric properties and rules )

U =G g3V qqs* =1+ (0,1, + 1, + cosBsls, l3sinb3)

Link I, : § 4, : Rotation of 8, arround the axis,,; oc, = (0,1;,0)T

Using the same techniqud ;, 7, q;,* we will have the result :

U7 =14+¢(0,l; + l,cos0, + cos(0, + 03) I3 ,sin(6, + 03) I + sinb,l,)

Link I, :And finally the last linkl, must rotate around the,, or o,-axis ; the amplitude being. S, the
transformation is T = § 41 77 qa1* = [(cy,51,0,0) + £(0,0,0)] 77 [(c1, —s1,0,0) + £(0,0,0)] =1+
£(0,cos0,l; + cos(0; + 0,) 1, + cos(6; + 0, + 65) I5,sinb,l; + sin(8, + 6,) I, + sin(6; + 6, + 65)13)

-
o

Fig. 7 Using (4x4) matrices and conjugation teqghaes

Or directly: Uy = [§ 1.4 a2-q a3 175 - [daz™ - Gaz” - Gar’]
We can check these resultBid. (7)) using (4x4) matrices and conjugation techniques.

2) The 3R Wrist.

This structure is used as a wrist in several rotiMA, STANFORD, SCARA and many others.
The three joint axes intersect at a common pojth€ mechanism is thus a spherical one. . The
arrangement (home position ) of the joints is thated inFig. (8).
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Fig. (8): The (ZYZ) Wrist

Choosing the Euler angles ( YZY) sequence instédtle (ZYZ) of the figure above; the kinematicstloé
wrist will be: ‘

i) Using quaternionssg, = (4.0»-G) - G- (G -G -C1') Where: )
0:=(C5,0,0,8),0:7(¢2.0,$.0) ,G=(¢1,0,0,8) and g =(cz,0,0~$;), & =(C2,.0,~%,,0) , g = (€1,0,0,— s1)

i) Using matricesK (6, 8,,03) = R(6,k)R(0,,j)R(03, k)

Computing the quaternion product1.1.gs) and converting it to a matrix will give the saffee appendix
IV) result, which corresponds to the famous “Ewlagles representation “ with its singularities agidnbal
lock”.

3) 6R robot.

Using the precedent results a 6R manipulator cbeldesigned by adjusting the above wrist center Gz at
a distance(0,; + I, + 13, 0)T (the End Effector of th&RR planar manipulator).

A

() =) ey
1 L] E
p"( ol

Fig. 9. The vector position of some tool rigidiyaehed to the gripper has the home position

L

The forward kinematics model of this 6R robot (FKI€)§ 1. §a2-Qas-Qas- Gas-Qas

The vector position of some tool rigidly attachedte gripper has the home positidiigy. ( 9)):

O, +1, +13+1,,00T =(0,L +1,,0)T

Its first transformation is only a pure rotatioroand the ‘-axis ;it can simply be represented by the
quaternion g=( G,0,%,0), it does also rotate around theaxis parallel to z-axis and this is represented by
the dual quaterniofi;s= ( 6,0, 0, §) +£(0,m s ) ; m being the moment 0©C,= (x,y,z)=(0,L,0

)' w.rt to the axis OZjzs= ( ¢;,0,0,8) +¢&(Lss,0, 0). The third rotation around the-dxis can be
represented by the quaternion g( ¢,0,5,0). The first operation will giveDs; = q¢.76.q; =1+
e(0,L +1,,0) =7, ;anunchanged vector.

The second transformation i€, = §us. 75 . qgs* = 1 + e(—lysinfs, L + l,cos05,0) and finally the third
wrist rotatiorTl will result in:75 = q4.7,.q4 = 1 + e(—l4co560,5in0s, L + l,cos65, l,sinb,sinfs) then v;
=(X3 Y3 Z3) -

The robot fourth motion (back to our planar margpot) will be around,;-axis with angléd;, the center of
rotation has the coordinateg®, [; + [, 0)T .Using the trigonometric identities: We havg;=

Robot Kinematics Using Dual Quaternions (Mahmoudi&3oni)
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Qa3 ﬁ;ﬁ;? = [(c3,53,0,0) + (0,0, —(l; + 13)s3)] [+5(( X3,Y3,23 ))]q;* =1+ 5(953' (1 -

cos03 )(ly + 1) + cosO3y; — sinbzz; , —sinBs(ly + L,) + sinbsy; + cosb;z; ) and replacings, Ys
andz by their respective values we can get the transdragector:

Vo = (=lyc0s0,sinbg, I + 1+ l3c0505+ 1,c0505 cosOs — 1,sinf;sinb,sinbs,

l5in0;+1, sinf;cos0s+ 1, cosO; sinb,sinbs ' = (X, ¥, 22 ).

The fifth rotation is around the,,-axis with angled,and center at(0, [;,0)” .

Following the same technique the DQ representiisgttansformation iST; = §u, . 75. qgp”* =
[(c,52,0,0) + (0,0, —(11)52)][1 + 5(( X2,Y2, 22 ))]q;;* =1+¢(0,x, '252211 + (sz - 522)3’2 -
25,C3Zy , —255C5 11 + 25,¢,y, + (¢2 — 52)z,)

Replacingx,, Y», andz, by their values we then have the transformed veete=( xq, y1, z1 ).

And finally the last transformation is abate c,,-axis or the Ox- axis with amplitudg; thus it can be
described by the quaterniopy; 75 = q,.71. 93

We can also check these results using (4x4) mateod conjugation techniques.

4) A better performance (Puma-like) 6R robot:

Allowing a rotation 6; around the Oz- axis instead of Ox- axis to geetieb mobility(mobility) and an
offset of distance d between the two parallel a%esd y Fig. (10)) our robot will be similar to the six axes
industrial robot; the Unimate Puma. Thus the FKMhi$ robot type Puma is:

Q = Ga1- Qa2 Ua3- Yaa-Qas Uas With §g = q1 = (¢10,0,51) , Ga6= (G0, $,0) +£(0,MS)=(Cs, 0, §
,0)+£(0,0,dg) , 4as =(GC50,0,8 +e(0,mS)=(C50,0, § +¢(LS,0-dS) andga, =( Cs0,S
,0) +£(0,0, dQ).We can check that the wrist centeri€ unaffected (left unchanged) by these last tb&e
transformations. Now we are in a position to expithee forward and the inverse kinematics in terfritbree
points rigidly attached to the gripper with homenfie coordinates: the shifted wrist cene€, = (d,L,0)",
OA=(dLa)" andOB=(d+b,L,0)".

Zz Z
A
{1 — I!-: ‘:3 i
- (G e + =+ o j— » y
{! Cq I -YI .
poo o
EA
L

Fig. 10.Offset of distance d between the two parallel akesd y

Using the existing abundant literature about thed)4forward kinematic matrices used for this type o
Unimate Puma robot, we can compare the two methndscheck these results using conversion techniques
(see Matlab Appendices).

This dual quaternion analysis can be generalizemhtoother type of serial robot provided its exsmatial
ossature (architecture) is given (link lengthsfiotes or/ and translations axes,rotation centeisgtd...) or in

two words knowing its D-H parameters.

7. CONCLUSION

The kinematics equation of a serial chain defires location of the end-effector in terms of the
joint parameters.The position and orientation carparameterized in different ways, such as withvib#-
known (4 x 4) homogeneous transformation matrix, Euler angles, quaternion or dual quaternion. In a
homogeneous transformation matrix, twelve pararaeter used to represent the position and orientafia
body. When the unit dual quaternion is adoptedtiertransformation, an eight-dimensional vector tnipgs
defined. Moreover, all types of Euler angles havéraation-insequence” nature. Thus, the Euler engl
method is suitable for representing a single framentation but not for representing orientatiothgan the
case of trajectory tracking. Another critical isdoe the Euler angles is that they suffer from esgmtation
singularities. The unit quaternion represents titeeffector orientation without singularities.

In the homogeneous transformation method, four otrignetric function calls and six
multiplications are required for calculation of ttiansformation matrix t-1 [T}. The operation used in this
algorithm is the product of (4 X 4) transformatimatrices. The multiplication of two (4 X 4) trangfation
matrices needs 48 multiplications and 36 additeamd subtraction, since the elements of the lastabthe
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matrix are constants. In n-link robot arm the numdfd@ransformation matrices is n, so n-1 numbemaftrix
products is required in order to detrmine the totahsformation matrix. Hence, the determinationhef end
effector position and orientation needs (48(n-Bn) multiplications and 36(n-1) additions and sabtions,
while only the orientation needs 31(n-1) multiptioas and 18(n-1) additions and subtractions.

For the case of 3-R robot (n=3), 114 multiplicatoand 72 additions and subtractions are
necessary. This speaks about the number of matleinaiperations required for computing the
homogeneous matrix and hence the time neededdaatime.

Despite the eight-dimension of the dual quaternioany authors stated that the dual quaternion is
the most compact and efficient way to express tnevs motion, that is, both translational and tioteal
transformations in a robot kinematic chain. Thel dugternion turns out to be an elegant and usetilfor
kinematic analysis in many researches such a®itiahnavigation, graphics and computer vision.

Table 1.Performance comparison of rotation operations.

Method Storage Multiplies Add & Substracts Total
Rotation Matrix 9 27 18 45
(3x3)

Quaternion 4 16 12 28

Table 2.Performance comparison of rigid transformation afiens.

Method Storage Multiplies Add & Substracts Total
Homogerous (4x4) 16 60 36 96
Transformation Matrix

Dual Quaternion 8 48 40 84

It is evident from the resul®&ble 1. andTable 2) that a matrix product requires many more
operations than a quaternion product. So a lotnoé ttan be saved and at the same time more nurnerica
accuracy can be preserved with quaternion than miglrices. In the examples mentioned in the present
work, it is clear that quaternion algebra providegery effective and efficient method for repreaéon of
forward kinematics equation. Further, the methodoist effective as it requires less computer menaoiy
saves lot of time by reducing the number of matherakcalculation. Comparing the two methods, it is
observed that the quaternion method gives exao#ysame result as that of homogeneous method isThis
general method applied specifically to robot malafmrs in the present work. However this can also b
extended to any other open kinematic chain foptimpose of kinematic analysis. Therefore thislamsed
as a powerful tool in the solution of kinematic Iplems.

Notein Matlab softwares we can find a gigantic librafyapplications dealing with all kind of matricestb
only a very small one dealing with only quaternigne DQs) and only with their numerical applicason
Thus a lot of work has to be done before the biatid creation of an emergency powerfull
“DualQuaternionlab” software.Presently there arenynguaternion applications in the area of aerospace
sequence, spherical trigonometry, calculus for ikiaics and dynamics, rotation in phase space dtt.A
more research has to be done in this aspect ardhffseare not far behind when dual quaternionsreglace

the traditional homogeneous method of represemtatimi mainly in the field of robotics.
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APPENDICES::

APPENDIX I: Conversions: Given a(4 x 4) homogeneous matr{f] = [R, d], where[R] andd are the rotation and
translation part respectively, we can constructabeesponding dual quaternion as follows. Firgnpaote the rotation

axis § = (Sx, Sy, SZ)T and angle from the rotation matriXR] using Cayley’s formula (McCarthy 1990). The realtpar
guaternion g can then be constructed as:

0 .0 . 6 .6
q = (cos;,Sx smE,SysmE,stm;)

—qz —q3 —qa

. . q1 qs —q3
The image part quaterniog i3 constructed as: @ G d

3 —q2 1

Such that:
G G G
qs = (—Sx smidx =Sy smidy -5, smidz)
0 N N
e = (cosidx +S, smzdy =S, smzdz>
6 0 0
q; = (—SZ sinzdx + cosidy + Sy sinidz)

.0 .0 0
qg = (Sy smidx — Sy smidy + cosidz)

On the other hand, if we are given a dual quaterflicubjected to the two well known constraints, ¢he 4
homogenous transformation matfix(q)] = [R(q),d(q)] can be written as:

422 — q3% — 4% + q12 2(9293 — q4q1) 2(9294 + q3q1)
[R@)] = 2(q92q3 + 94q1) — 22+ q3% — q4® + q4? 2(9394 — 92q1)
2(q294 — 9391) 2(9394 + q2q1) = 4% — q3%+ q4% + q4?
And
_ _ q2
qs Qs q7 de qs
d@ =|"9 —95 49 47 a
q7 —4¢ —qs5 (s
q1
APPENDIX II: Matlab « Dual Quaternion » multiplication program
symsql
symsl
symsq2
symsq3
symsg4
symsga
symsqgb
ga=ql+l*q2
gb=qg3+I*q4
Q=ga*gb

Q=q1*q3+I*(q2*q3+q1*q4)

APPENDIX Ill: 3R planar manipulator with matlab :
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dg:dual quaternion
cqg:conjugate quaternion

link(3)

symsc3

symss3

symsl1l

symsl|2

symsl3

symsl
dg3=(c3,s3,0,0)+I*(0,0,-(11+I2)*s3)
cq3=(c3,-s3,0,0)+1*(0,0,-(11+I2)*s3)
v3=1+1*(0,(11+12+13),0)
dg3*v3*cq3=1+1*(0,I11+I2+c3*13;13*s3)

link(2)

symsc2

symss2

symscl2

symss12

dg2=(c2,s2,0,0)+1*(0,0,-11*s2)
cg2=(c2,-s2,0,0)+1*(0,0,-11*s2)
v2=1+1*(0,I1+I2+c3*13,13*s3)
dg2*v2*cq2=1+1*(0,I1+I2*c2+c12*13,512*3+52*2)

link(1)

symscl

symssl

symsc23

symss23

symscl123

symss123

dgl=(c1,s1,0,0)+I*(0,0,0)
cql=(cl,-s1,0,0)+I*(0,0,0)
v1=1+I1*(0,I1+I2*c2+I3*c23;|2*s2+I3*s23)
dgl*vl*cql=1+1*(0,c1*1+c12*2+c123*3,51*1+s12*25123*3)

dgl=(c1,s1,0,0)+I*(0,0,0)
cql=(cl,-s1,0,0)+I*(0,0,0)
dg2=(c2,s2,0,0)+1*(0,0,-11*s2)
cq2=(c2,-s2,0,0)+1*(0,0,-11*s2)
dg3=(c3,s3,0,0)+I*(0,0,-(11+I2)*s3)
cq3=(c3,-s3,0,0)+1*(0,0,-(11+I2)*s3)

a=(c1,s1,0,0)
b=(0,0,0)

c=(c2,s2,0,0)
d=(0,0,-11*s2)

e=(c3,s3,0,0)

=(0,0,-(11+12)*s3)

v3=1+I*(0,(11+I2+13),0)

APPENDIX IV: The YZY Wrist

symstl

symst2

symst3

al=[cos(tl) 0 sin(t1);0 1 0;-sin(t1) O cos(t1)]
a2=[cos(t2) -sin(t2) 0;sin(t2) cos(t2) 0;0 0 1]

a3=[cos(t3) 0 sin(t3);0 1 0;-sin(t3) 0 cos(t3)]
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R=al*a2*a3

R =

[ cos(tl)*cos(t2)*cos(t3) - sin(tl)*sin(t3), -sfi3)*sin(t2), cos(t1)*sin(t3) + cos(t2)*cos(t3)rgil)]
[ cos(tl)*sin(t2), cos(t2), sin(tl)*sin(t2)]

[ - cos(t3)*sin(tl) - cos(tl)*cos(t2)*sin(t3), ¢i)*sin(t3), cos(tl)*cos(t3) - cos(t2)*sin(t1)*dit3)]

Appendix V: A general Screw Motion.

nZv+c Ny, ¥V — NS nnv+nys  ty

nynyv+n,s  njv4c NyN U —NyS &y,
- 2

NNV —NyS  NyN U + Ny S ngv+c t,
0 0 0 1

With :v=1-cos ,c=cosf ,s=sinb

IJRA Vol. 1, No. 1, March 2012 : 13 -30



