
International Journal of Robotics and Automation (IJRA)
Vol. 1, No. 1, March 2012, pp. 31~48
ISSN: 2089-4856 � 31

Journal homepage: http://iaesjournal.com/online/index.php/IJRA

Towards Behavior Switch Control for an
Evolutionary Robot Based on RL with ENN

Jingan Yanga1, Yanbin Zhuang2, Chunguang Li3
1Changhzou Key Laboratory of Software Technology & Applications, Jiangsu Prov., P. R. China and School of

Computer & Information Sciences, Hefei University of Technology, Hefei 230009, Anhui Province, China.
2.3. School of Computer & Infomation Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu Province,

China.

Article Info ABSTRACT

Article history:

Received Feb 6, 2012
Revised Mar 12, 2012
Accepted Mar 21, 2012

This paper proposes a behavior-switching control strategy of an evolutionary
robotics based on Artificial Neural Network (ANN) and Genetic Algorithms
(GA). This method is able not only to construct the reinforcement learning
models for autonomous robots and evolutionary robot modules that control
behaviors and reinforcement learning environments, and but also to perform
the behavior-switching control and obstacle avoidance of an evolutionary
robotics (ER) in time-varying environments with static and moving obstacles
by combining ANN and GA. The experimental results on the basic behaviors
and behavior-switching control have demonstrated that our method can
perform the decision-making strategy and parameters set optimization of
FNN and GA by learning and can escape successfully from the trap of a local
minima and avoid “motion deadlock” status of humanoid soccer robotics
agents, and reduce the oscillation of the planned trajectory between the
multiple obstacles by crossover and mutation. Some results of the proposed
algorithm have been successfully applied to our simulation humanoid
robotics soccer team CIT3D which won the 1st prize of RoboCup
Championship and China Open 2010 (July 2010) and the 2nd place of the
official Robo Cup World Championship (2011) on 5-11 July, 2011 in
Istanbul, Turkey. As compared with the conventional behavior network and
the adaptive behavior method, the genetic encoding complexity of our
algorithm is simplified, and the network performance and the convergence
rate ρ have been greatly improved.

Keyword:

Behavior switching
Evolutionary robotics
Evolutionary neural network
Reinforcement learning
Robotic adaptability
Simulated binary crossover
Simulated robotic agents

Copyright © 2012 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Jingan Yanga
Changhzou Key Laboratory of Software Technology & Applications, Jiangsu Prov., P. R. China and School
of Computer & Information Sciences, Hefei University of Technology, Hefei 230009, Anhui
Province, China.
Email: jayang@mail.hf.ah,cn

1. INTRODUCTION
1.1. Evolutionary Robotics

Evolutionary robotics has been an active research area that applies artificial evolution to construct
control systems for autonomous robots. This is also a promising methodology for the autonomous
development of the robots, in which their behaviors are obtained as a consequence of the structural coupling
between a robot and environment [37][26]. In evolutionary robotics, a robot’s perception-action loop is
determined by a control mechanism that is artificially evolved [31]. Many works have proposed evolutionary
robotics control systems using evolutionary adaptations of artificial neural network [25][8][21][1], genetic
programming [32][14], and a learning classifier system [5]. Artificial neural networks are commonly
employed to evolve a robot controller [11][29], and an evolutionary algorithm is used to design and/or train
ANN for solving a given task. Many attempts for robot control and an evolutionary algorithm have focused

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

32

on developing autonomous robots inspired by animals and humans that have robust adaptation and stable
behavior in changing environments [16][33]. Recent researches have put even more emphasis on the fitness
functions used in evolutionary robotics [24][27][4]. In order to enable the robots to operate normally in
unforeseen and dynamic circumstances, the robots must have the ability to evolve their behaviors. In this
paper we establish the modules for obstacle avoidance behavior, goal approach behavior, and behavior-
switching control based on combination of artificial neural network (ANN) and genetic algorithm (GA)
which allow the robots itself to sense their environments and have self-adaptable function.

1.2. Evolutionary Reinforcement Learning and Adaptation of Behavior Control

In a natural system, animals do not only adapt to environmental changes, but they can also
accumulate adaptations. They can store “knowledge” about a previously encountered environments and use it
to alter their behaviors when faced with a specific environments again. This process is called learning when it
occurs in a lifetime and evolution when it occurs in a lineage [7]. In other words, the agent adapts itself
appropriate for different environments by evolving different behaviors. Robot learning is a dynamic
continuous mechanism. ER is one of a host of machine learning methods that rely on interaction with, and
feedback from, a complex dynamic environment to drive synthesis of controllers for autonomous agents [24].
Only by constant study can the robot improve better its own adaptability, and2 acquire knowledge by relying
on constant interaction with the dynamic environments. Finally, the robot can learn to move in the unknown
environment by repeatedly adjusting the environmental module and its own module. This is what Brooks
called behaviorism thought [36][34]. He thought that the effective way to design an intelligent robot should
not be like traditional artificial intelligence, i.e., completely based on symbol inference ”top-down”, but
should be like the evolutionary mechanisms of the biological organisms who use ”bottom-up” approach
based on perception-action, and learning by interacting with the environments. In this work, we designed a
simulation environment of robot navigation and an evolutionary robot module. The strategies for obstacle
avoidance and the approach of the robot’s navigation [15] in the unknown environments are regarded as the
robot’s basic behavior. The ability of the robotics to jointly apply many basic behaviors to its environments is
called combined behavior. The process that the robot activates some basic behavior at some moment is called
behavior switching. The robot’s behavior and its behavior switching are controlled by using FFNN (Feed
Forward Neural Network) and PNN (Probabilistic Neural Network) [10][30][6][13][22]. ANN-based
controllers consist of many basic network modules. Each module is a subnetwork with the standard unified
structure. This method may effectively reduce the network computing complexity and the encoding
complexity, and also speed up the evolutionary rate. We then directly carry on the encoding evolution to
various modules based on genetic algorithm. This evolutionary process may be regarded as reinforcement
learning process of the robots.

Finally, we demonstrate by the results of the simulated experiments that these novel modules do not
require the complete environmental knowledge, and their structures are simple and can be easily extended to
more complex structures, because the robots have a self-adaptive ability to learn from their experiences and
the environments.

1.3. Main Challenges in ER and Contributions

One of the main challenges in ER is to discover and to model different adaptation mechanisms.
Most of the works in ER consider the artificial evolution of neuro controllers as one of these adaptation
mechanisms [26].

It is considered a feasible methodology to develop autonomous agents that can reveal conscious
abilities. Artificial evolution differs from other learning schemes because it works on a population of
different individuals based on a selectionist approach, rather than a goal directed one.

Thus, major contributions of this paper are summarized as follows: (1) proposed a behavior-
switching control strategy of an evolutionary robotics based on ANN and GA for implementing robotics
navigation in the unknown environments; (2) designed and built behavior-switching learning modules of an
evolutionary robot; (3) the proposed algorithm can escape successfully from the trap of a local minima,
jumps over the region containing a local minimum point by crossover and mutation, and perform behavior
switching and obstacle avoidance effectively by evolutionary reinforcement learning; (4) the genetic
encoding complexity is simplified using the neural network modules; (5) the proposed algorithm has better
performance in convergence speed, solution variation, dynamic convergence behavior, and computational
efficiency than the path planning method based on the real-coded genetic algorithm with elitist model. This
behavior-switching controller can easily be extended to other applications by adjusting control parameters of
ANN and GA and physical constraints.

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

33

2. RL-ENN AND EVOLUTIONARY ROBOTICS
2.1. Reinforcement Learning witn ENN
 The objective of reinforcement learning is to solve decision-making tasks through trial and error
interactions with the environment. The reinforcement learning [20] is referred to learning for agent to map
the environment state to action in order to maximize the total reward and obtain the the maximum cumulative
reward value of state-action pair. Formally, this is defined as a Markov decision process using the state space
S, action A, and the rewards R.
 Definition 2.1 A Markov decision process is denoted as ⟨S,A, r, γ, p⟩, where S=(s1, s2, · · · , sm) is
the state space, A=(a1, a2, · · · , an) is the action space, r:S×A→R is the reward function of the agent, γ ∈ [0,
1) is the discount factor which reflects the notion that rewards depreciate by factor γ<1, and p: S×A→∆ is the
transition function, where ∆ is the set of probability distributions over state space S.
 The closer the discount factor γ is to 1 the greater the weight is given to future reinforcements.
 Definition 2.2 A fitness function is a particular type of objective function that prescribes the
optimality of a solution (for example, a chromosome in a genetic algorithm) so that the particular
chromosome may be ranked against all the other chromosomes. Optimal chromosomes, or at least
chromosomes which are more optimal, are allowed to breed and mix their datasets for producing a new
generation that will hopefully be even better.
 Definition 2.3 For any policy π and any state s, the value of policy π in state s is denoted as V (s)
which is the expected discounted cumulative reward the agent gets and is formulated as follows:

M

V π (s) =
∑
γ

k E[rt+k |π, st = s] (1)

k=0

 Definition 2.4 For any policy π and any state s, the expected return of taking action a in state s and
following policy π afterward is denoted as Q(s, a) which is the expected discounted cumulative reward the
agent gets and is defined as follows:

Definition 2.5 The immediate reward, for all states in the state space is defined as:
1) The reward for non-terminal states: r = 0.
2) The reward for terminal states:

a) The reward for the goal state: r = 1.
b) The reward for invalid states: r = 0.
c) The reward for obstacle states: r = −1.

In state s∈S, an action a∈A is executed. The agent experiences a state transition st→st+1 and obtain a reward
rt+1 ∈ R. The objective of the agent is to maximize its reward Rt defined by [28]

 T

Rt =∑ r i (2)
 i=t+1

where T is the time reaching the final state. The states s0, s1, · · · , sT is called an episode.
The decision of which action to take in a certain state is determined by the policy

 π(s, a) = p(a|s) ∀s∈S (3)

which denotes the probability of taking action a in state s. Q-function for a policy π is defined as

 Qπ (s, a) = Eπ {Rt |st = s, at = a} (4)

which denotes the expected reward of taking action a in state s and following policy π afterward.
The task of a reinforcement learning robot is to learn a policy π : S→A for selecting actions based on current
observed states π(st) = at. Learning the optimal policy π∗ for producing the greatest cumulative reward over
time is denoted as follows:

π
∗(s) = arg max[r(s, a) + γV ∗(δ(st , at))] (5)

a∈A

where the optimal action in state s is a that maximizes the sum of the immediate reward r(s, a) and the value
(discounted by γ) of following the optimal policy. The δ(st, at)(next state given st and at) is defined as a state

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

34

transition function. V ∗ is the maximum discounted cu mulative reward that the agent can obtain starting
from state δ(s, a).
When an agent is at some environmental state, the reinforcement learning method does not inform the agent
to adopt the corresponding correct actions, but the selected action’s quality is evaluated by using the
reinforcement signal provided by the environment, and the optimal strategy is obtained through trial-and-
error unceasingly to get best mapping from state to action. The reinforcement learning structure and the state-
action pair are shown in Figure 1.

The environment for an agent is described as the state set: S = {si|si∈S}, the action set that an agent
performs is expressed as: A = {ai|ai∈A}. Under the current state si, an agent selects action ai and perform it.
At the moment the state st transfers to st+1, and obtains the reinforcement signal rt from the environment.
Task of agent’s reinforcement learning is to obtain the maximum cumulative reward by using a control
policy π.

 s0 s1 si
a 0 a1 … ai …

 r0 r1 ri

Fig. 1. The block diagram of reinforcement learning structure and state-action pair for robot behavior
control.

Assume that an agent is a point robot with simplified motor actions: forward, left, right, and

backward. All actions can be tried in all states. The robot world and its state of transitions are regarded as a
function of the present state and action taken. The task of the robots is to reach a given goal state via the
shortest path. For reinforcement learning robots, a reward function given any current state, next state, and
action, st, st+1, and a, is given by equation (1).

0 if st+1 = st

rst ,st+1 = 1 if st+1 = given goal state (6)
-1 if st+1 = st (obstacle state)

The negative numerical reward in equation (1) discourages agents attempting an action against the

world boundary. This action does not change the state of the environment.
The basic idea of reinforcement learning is on1ine learning which combining together the control

process and the learning process.

2.2. Evolutionary Neural Network

The hierarchical network architecture of ENN is designed based on the biological evolutionary
genetic algorithm. The network connection weights, the network topology, the excitation function of each
node in the network, and learning rules can be evolved for performing the global search widely in all solution
space for network weight training until the optimal solution of the network architecture with least mean
square error between the network output and goal output of the given training set are found and for avoiding
the problem to being trapped in a local minimum caused by gradient descent learning. The evolution of
learning rules can be regarded as a process of “learning how to learn” in ANN where the adaptation of
learning rules is achieved through evolution [37].

2.3. Evolutionary Robotics Based on Reinforcement

Learning with ENN Evolutionary robotics (ER) is a new technique for the automatic creation of
autonomous robots and a subfield of behavioral robotics. It is concerned with the application of evolutionary
computation methods to the area of autonomous robotics control systems. One of the central goals of ER is to
develop automated methods that can be used to evolve complex behavior-based control strategies.

a
Selected action

State signal

s

Reinforcement signal

Environment Agent with RL system

r

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

35

In the design process for an intelligent robot, some key questions are: 1) how to realize the
“behaviorism” idea; 2) how to learn the behavior and actions [9] by interacting with the environments; 3)
how to acquire knowledge from the environments and their experiences; 4) how to control the topological
evolution trend of network modeling and complexity in network model efficiently.

Among the learning methods, reinforcement learning seems to be most suited for agent-based
applications for supporting the self-improvement of a population of solutions [28]. The reinforcement
learning is to learn what to do, how to map situations to actions so as to maximize a numerical reward signal
and is usually based on the idea that the robot receives rewards (feedback signal), which are positive or
negative scalar values, based on its performance [3][2][38][19]. Depending on the reward, the agent
reinforces (positive reward) or decreases (negative reward) its confidence on the correctness of its current
behavior. The rewards are given by an external coach or by an evaluation function (reinforcement function)
internal to the robot controller. The robot chooses one act in the environment. The condition and state are
changed after the environments accept this action. One reinforced signal reward (or penalty) is created
simultaneously and is fed back to the robot. The robot chooses next action, again according to the
reinforcement signals and the current environmental state. The principle of the choice is to make the
probability of receiving a positive reward increase. The action chosen not only affects the current reward
value, but also affects the environmental conditions and states for the next choice, as well as the final reward
value [23][17]. A meaningful combination of the principles of neural networks, reinforcement learning, and
evolutionary computation is useful for designing agents that learn how to solve a complex task and adapt to
their environment through interaction with the environment.

Here, we consider a mobile robot actuated by using left and right two caterpillar bands. Each
caterpillar band has four options: forward, left, right, and backward. Their codes are: 0=forward, 1=left,
2=right, 3=backward. The behaviors and actions of a robot are implemented by changing speeds of the left
and right wheels based on reinforcement learning neural network. Figure 2 shows neural network architecture
including the 8 infrared sensors data inputs, 5 hidden neurons with sigmoid activation function pi, and two
output neurons representing wheels commands. Encoding of the states and the actions are illustrated in
Table 1.

`

Fig. 2. Neural network architecture for the obstacle avoidance using neural modelling of the robot
behaviors.

S1

S2

S3

In
frared sen

so
rs (S

1 -S
8)

S4

S5

S6

S7

S8

dust

∆dust

bias=1

H1

H2

H3

H4

H5

Hidden neurons

Two output neurons
NC_lw

NC_rw

Σ

Σ

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

36

Table 1. Encoding of the states and the actions
The states 0 … 14 15

Encoding of the states 0000 … 1110 1111
The actions forward left right backforward

Encoding of the actions 00 01 10 11

2.4. Relationship Between GA and Simulator

The relationship between the genetic algorithm (GA) and the simulator is illustrated in Figure 3.
Obviously, the simulator and the GA have the different functions. The GA is responsible for transferring
genotype to the simulator, and decoding genotype as a neural network and/or input sensor information
(phenotype). The phenotype mainly describes an organism’s traits and the organism’s genotype describes its
genetic makeup. Two organisms can have the same phenotype but have different genotype if one is
homozygous dominant and the other is heterozygous.

Suppose the fitness values of individuals 1, 2, · · · , n be f1, f2, · · · , fn respectively, then the
probability of an individual selected for reproduction based on roulette wheel selection (see Fig.3) is
calculated by following equation[12]:

GA Processing Simulator

Fig. 3. Relationship between genetic algorithm and simulator

fi

pi = (7)
∑ ��

�
���

The simulator uses this information to execute simula tion process, and transfers the simulated results,
namely, the robot fitness values, to the GA processing. The interactive process between the robot and the
environment is detailed as follows:

 Fitness = 0
 t = 0
 while (t ≤ Nul) do
 reads the sensor inputs
 t = t + 1
 compute and return to Fitness (8)

where t is the length of a time step, and Nul is the upper limit of the simulation running time steps. The
fitness function computation has many different options according to the different experiments. Those above
are the basic steps of only one simulated operation. For each generation of the GA, each individual in the
population has to pass the simulated process above. In the interactive process with the environments, reading
the sensor inputs is for computing the output of control network, then for moving and updating positions of a
robot according to the output of control network.

Recombination
crossover &

mutation

Genotype
decoder

New
genotype
P(t+1)

Roulette
Wheel

selection

Interaction with
environment
(phenotype
evalution)

Old
genotype

P(t)

Phenotypes
control &
sensor
parameters

Fitness

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

37

3. OBSTACLE AVOIDANCE BEHAVIORS
We have designed the behaviors for avoiding movable obstacles which get nearer from various

positions and directions using the behavior network and the proposed method.

3.1. Fitness Function for Obstacle Avoidance
The fitness function is the heart of an evolutionary computing application [24]. The fitness function

is responsible for determining which individuals (controllers in the case of ER) are selected for reproduction.
If there is no fitness function, the individual is randomly selected. Successful evolution of the autonomous
robot controllers is ultimately dependent on the formulation of suitable fitness functions that are capable of
selecting successful behaviors. The performance for each evolved controller is evaluated by using the
different fitness functions.

Therefore, for the autonomous robots interacting with the environment, they are given an external
reward or penalty (r = rt) in some state st. For obstacle avoidance behavior r = −1 upon collision with an
object and r = 0 otherwise. In order to get a optimal policy, the reward function should be fixed. For example,
a robot that cannot avoid an object soon become immobilized when its path is blocked, the robot controller
would obtain a negative fitness value.

The internal reinforcement signal r∗ is derived that represents the immediate reward assigned to the
robotics system in terms of correctness of the actions executed so far and also is the prediction error of the
total reward sum between two successive steps:

r∗(t) = r + γV (⃗xt+1) − V (⃗ xt) (9)

where r represents the direct effect of action on the transition, γV (⃗xt+1) − V (⃗ xt) is the estimation of the
improvement of states. The r∗ is used as the error to train the neural networks mentioned above.
If the desirability of a state is associated with a certain action Q(⃗xt, at), the equation (5) for the prediction
error becomes:

r∗(t) = r + γQ(⃗ xt+1, at+1) − Q(⃗xt, at) (10)

where the parameter γ (0≤γ≤1) determines the present value of the future rewards. Main differences between
two reinforcement learning approaches are to calculate 1) state evaluations V (⃗xt+1) and 2) state-action
evaluations Q(⃗xt+1, at+1).

3.2. Network Architecture and Encoding

An autonomous robotics can acquire signals from the goal sources using approach sensor for
locating the goal sources, and then should approach and reach the goal sources as soon as possible. This
behavior is just opposed to obstacle avoidance behavior. The network architecture design of the approach
behavior is also relative to the network architecture design of obstacle avoidance behavior. Behavior control
of the robots is performed by using a module neural network. The whole network consists of multiple neural
network modules (g0-g7).

All modules have a similar topological architecture including two input nodes, one hidden layer
with two nodes, and one output node. Reasonable selection of the node number in the hidden layer should
synthetically take complex degree of the network architecture and permissible errors into account. If the
number of nodes in the hidden layer is too few, the network may not be trained at all or the network
performance gets very poor.

If the number of the nodes in the hidden layer is too many, although this can reduce the errors of the
network system, but may lengthen training time of the network at the same time. On the other hand, the
training of neural network is easy to fall into the local minimum not to be able to obtain the optimum solution
which also is one of main reasons for over-fitting in neural network training and learning.

Our preliminary simulation experiments have also proved that the performance of the crossover
mapping method was not satisfied. When a robot goes directly forward in free space, in order to turn to
examine some goal source, it will reduce the speed of the motor on the side of the sensor approaching.
Therefore, our algorithm should directly map the left sensor input into the left motor, and the right sensor
input into the right motor, i.e., only connection weights (w01 between g0 and g1, w03 between g0 and g3,
w21 between g2 and g1, w23 between g2 and g3, w45 between g4 and g5, w47 between g4 and g7, w65
between g6 and g5, and w67 between g6 and g7) are remained. The whole network structure of the approach
sensor is similar to that of the touch sensor. But the main difference is that the input of the approach sensor
makes use of the difference between the left sensor signal and right sensor signal (See Figure 3.4.1). In the
experiments, we not only use a chromosome with 56 bits (6×8+8=56 bits), but also add 6 bits to evolve the

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

38

related sensor parameters: 3 bits are used for encoding the exploratory ranges of the sensors, and the other 3
bits are used for encoding the intervals between the sensor ends. A ”ci” in Figure 4 represents the encoding of
wij (j=1,3,5,7).

Fig. 4. Network architecture and encoding of approach behavior control of the robot.

3.3. Parameter Setup for Obstacle Avoidance

Here, the GA algorithms apply a single-point crossover to artificial chromosomes with 56 bits. The
algorithm uses a special bit mutation pattern so that only one bit in the chromosome turns over. First we
choose one chromosome to execute mutation based on the mutation rate, and then stochastically choose one
bit to turn over in the selected chromosome. Therefore, mutation rate that must be divided by the
chromosome bits can be equal to the mutation rate normally used in a GA algorithm.

Elitism was implemented by finding the fittest individuals n in the current generation and copying
them across into the new generation before the breeding process has begun. Elitist selection always preserves
the fittest individuals from the population to the next generation. Therefore, elitist selection increases a
convergence rate of GA, but elitist selection may lead to premature convergence in the GA search process
being trapped in local optima since the inherited best individuals might not be close to the global optima. For
example, if too many individuals are preserved from one generation to the next or if a ’super’ individual (an
individual with a far better fitness than the rest of the population) occurs, then elitism can seriously increase
the chances of the best individual being rapidly replicated within a few generations and filling the whole
population with identical ’siblings’. Once this happens, the population will tend to stagnate to a local minima.
Our studies have shown that one way to overcome this is to take a higher mutation rate. The effect of a low
mutation rate on a population reflects few variations available to respond to sudden environmental changes.
This means the species is slower to adapt. A higher mutation rate may damage more individuals, but by
increasing variation in the population could increase the speed at which the population can adapt to changing
circumstances. The Elitist selection here has been embodied in the following aspects:
1) if the robot does not do anything, accumulate 0 score;
2) if the robot goes directly ahead, but does not attempt to avoid any obstacle, and finally crosses the

environment boundary, then the robot would accumulate one negative score which takes 0 score;
3) if the robot can correctly perform obstacle avoidance by learning, it can accumulate one positive score;
4) if the robot can not only complete obstacle avoidance, but also go forward at full speed in the free space,

then it has a higher positive score.
The simulation steps is setup 1500 so that the robot can accumulate one high fitness value in its

evolutionary process, and also learn obstacle avoidance behavior correctly. The weighted factor of collision
punishment takes a value of 10 (determined after many experiments). If this factor value is too low because
walking distance is far greater than the collision punishment value, some individuals which give a poor
performance may be regarded as the best individuals, and may be involved in the heredity operation in the
next generation. When this factor value is too high, the pressure on the robot to execute obstacle avoidance
behavior is rapidly increased, and so the useful heredity material in the evolutionary process may be lost.

In all experiments to improve the efficiency of the simulation, the size of the population was 40.
These simulation experiments have demonstrated that the use of a large population does not enhance the

4 3 2 1 c0 g7 g6 … c0 g1 g0

M
o

to
r o

utp
u

t

A
p

p
ro

ach sen
so

r in
p

u
t

Righ msb

Righ lsb

Left msb

Left lsb

Righ msb

Righ lsb

Left msb

Left lsb

g0 g1

g2 g3

g4 g5

g6 g7

Gene code ci

interval 3 2 1 3 2 1 Sensor parameter coding: range

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

39

performance of the system. The upper limit of the simulation evolutionary operation takes 40 generations.
Another reason is to save time. We observed from our experiments that a community’s average performance
enhancement is limited after that community has evolved about 30∼40 generations.

3.4. Simulated Results for Obstacle Avoidance

The simulated experimental results for obstacle avoidance in the different environments and analysis
of the results are is illustrated in Figure 5. As well as changing the crossover rate and the mutation rate, the
simulation experiments also contained two different environments: one contained 4 obstacles and the other
contained 10 obstacles. The experimental results are illustrated in Figure 5(a) and Figure 5(b), respectively.

Evolutionary time for an environment containing many obstacles should be longer. The more
obstacles, the more less free-motion opportunity and the collision times will increase. This leads the robot to
increase its accumulated negative score possibilities. In the environment containing 10 obstacles, the
production of the best individual will take 10 generations. However, in the environment containing 4
obstacles, this evolutionary process needs only 4 generations. The robot’s evolutionary performance become
worse in the environments containing more obstacles, because the straight lines of highest score values that
obtained by the robot have less opportunity to move forward. Slightly increasing the crossover rate and
mutation rate may make the convergence rate slow down. But 40 generations’ evolution later, the average
experimental performance may be accepted. Too high a crossover rate can reduce the GA performance, since
its main aim is to have a higher destruction rate to gain the highest fitness value pattern. Too high mutation
rate has a remarkable effect on GA performance [38]. In some situations, the system continues to operate for
only 10 generations more, and the system performance may get worse. However, the convergence rate and
the quality of the solutions are greatly improved by combining parallel GA and crossover mapping.

4. IMPLEMENTATION OF BEHAVIOR SWITCHING CONTROL STRATE GY
4.1. Neural Network Encoding Based on GA

Neural networks are well suited for training with evolutionary computing-based methods because
they can be represented by a concise set of tunable parameters [30]. A wide variety of neural network
structures have been used. The most common of these are layered feedforward or recurrent network
architectures. The behavior-switching controllers of ER based on the network modules proposed in this paper
is accomplished by combining ANN and GA.

The basic idea of behavior switching control strategy is that behavior-switch controller should be
activated immediately and switched to obstacle avoidance behavior and follow wall behavior once the touch
sensor finds the obstacles, and the ERL systems have to change robots’ moving direction rapidly based on the
basic behaviors and jump over the region with the local minimum point, and escape from the trap of local
minimum and plan their paths to goal again. Furthermore, the genetic algorithms are used to evolve network
connection weights for providing a global search method for network weight training and for avoiding the
problem to being trapped in a local minimum caused by gradient descent learning.

This is very important to multi-robot system and the simulated and real robotics soccer games. The
approach behavior should also be activated when the robot is in the free space. For the basic approach
behavior and approach sensor parameters are effective, we can use the GA to evolve the switching network
of the basic behaviors directly.

This experimental environment contained only 10 obstacles and 10 goal sources. This is because the
basic behavior and the sensing parameters embedded in the robot evolve on the basis of this environment. In
our experiment, positions, sizes, and shapes of the obstacles, and the positions of the goal sources are
variable.

The numbers of obstacles and the goal sources are fixed at 10. The robot’s design is basically the
same as the one described above, but the approach sensor parameters are fixed, and no longer evolve by the
GA encoding. This new network structure is illustrated in Figure 6. The chromosome includes 11 module
networks (g0–g10)(each module network has 6-bit encoding; every weight has 1-bit encoding). Therefore,
the module networks and their connection weights need 6×11+8×2+4×2+4=94-bit encoding in al1. The first 8
module networks are almost the same as the module networks in the several sections above. The main
difference is that the output is not directly connected to the motor outputs, but is the input of the second cell
network composed by the other two module networks (See Figure 7). The output of the module network
11(g10) determines the basic behavior that will be activated. The output of 0 represents obstacle avoidance,
and the output of 1 means approach behavior.

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

40

4.2. Parameter Setup of GA Operator
The robot’s duty is to reach all goals (10) within 250 time steps. Therefore, the robot which reaches

all goals and do not touch any obstacle will obtain the highest fitness value of 2000. However, if this robot
touches an obstacle or stops at some time step in the evolution cycle (deadlock), its fitness value should be 0.
The fitness values that other robot can have lie between two fitness values of 0 and 2000. Their chromosomes
may be used as intermediate mediums of the heredity overlapping operation.

 (a) (b)

Fig. 5. Comparison between the experimental results in the different obstacle environments: (a) Maximum
fitness and average fitness of the individuals at each generation in 4-obstacle environment; (b) Maximum

fitness and average fitness of the individuals at each generation in 10-obstacle environment.

Fig. 6. The neural network topology of behavior switching control: the output of the module network (g10)

has two states: 0 represents obstacle avoidance behavior, and 1 means approach behavior.

Because the simulated time steps are reduced, the computation time for each generation is suitably

increased, and therefore the number of individuals is increased up to 50. The number of the evolutionary

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

41

generations is still 40, and the convergence rate ρ is kept approximately the same as the convergence rate ρ in
our previous experiments. Moreover, in this experiment we use the Elitism strategy to ensure that the current
best individual survives to a next generation.

Table 2. Functions and parameters of RL and genetic algorithm
Functions of RL and genetic algorithm parameters
Learning time of each generation (s) 20-30
Number of individuals 50
Crossover probability pc 0.5-0.7
Mutation probability pm1 for increasing links 0.1
Mutation probability pm2 for increasing nodes 0.05
Weight mutation probability pm3 0.2
Mutation probability (per gene) pm4 0.1
Excitation response mutation probability pm5 0.1
Learning rate η of reinforcement learning 0.3

4.3. Experimental Results and Evaluation

Comparison curves of average performance for behavior switching after the GA operated 10 times
in two different simulated environments are illustrated in Figure 7, and the initial population that operated
every time all is stochastic. We see from Figure 7 that the robots walk more easily in the environments in
which their initial average fitness values are higher, and can maintain this superiority in the extra simulation
process. After this robot had operated 10 times in the different experiments, we took the average fitness
value, and the obtained result curve is smoother. This expresses a more real learning curve than that in the
earlier experimental result from one operation only.

It should be noted that the robot’s learning curve in the initial phase in this experiment is steeper
than the learning curve in the experiment in the previous section. The GA can improve rapidly the
performance of the robot, and establish the correct mapping relations from the sensor inputs to the behavior
outputs (actions). One of reasons that this phenomenon occurs is to reduce the number of the system’s
behavior outputs. There is only 1 bit which has two kinds of possible outputs in this experiment, but in the
previous experiments, 4 bits including 16 kinds of possible outputs were mapped directly to the motor control
(actions to be executed). The second reason is that the architecture and the connection weights of the module
neural networks have be evolved using crossover and mutation operations. The complexity of the network
architecture is simplified with less nodes and the weights preferred.

Moreover, the experimental results have demonstrated that the input of the approach sensors may be
reduced to 2 bits, one of them marking goal source on the left-hand side, and the other marking goal source
on the right- hand side. If the goal sources exist on both sides of the robot, the goal sources near the robot is
processed at first. According to our experiments, when a touch sensor, in particular a front sensor is activated,
the robot’s behavior should switch immediately to the obstacle avoidance behavior.

4.4. Comparison with Adaptive Behavior Method

We evaluated our proposed behavior-switching control strategy of an evolutionary robotics by using
the evolved ANN controller from the population and the hand coded knowledge-based controllers and
compared the results with the adaptive behavior method proposed by Hyeun-Jeong Min in [22].

In our experiments, the 3D robot simulator and a real Khepera II mobile robot are used. The
simulator environment includes: three mobile robots (Robot 1, 2, and 3) which generate behaviors using the
proposed method, three goal objects (Goal 1, 2 and 3), and two static circular obstacles. Two of the robots act
as the movable obstacles.

These two robot-obstacles can only detect and avoid the walls of the fence, and cannot avoid a robot
when they collide with other robots. This simulator may change the angles of the view, and evolutionary RL
was used for parameter optimization and algorithm verification, and for testing performance of the proposed
method.

At the local minimum point P in Figure 8, the robot halted and switched to the collision-avoidance
behavior immediately and performed collision avoidance in the different obstacle environments based on
behavior switch control and follow wall behavior by crossover and mutation, and reduced the oscillation of
the planned trajectory between the multiple obstacles. Figure 9 presents the simulated results of the obstacle
avoidance in the different obstacle environments: Robot3 in Figure 9(a) halts and switches to the collision-
avoidance behavior immediately when it finds two static obstacles and two movable obstacles in the same

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

42

direction at its front and avoids two movable obstacles, fence, and two static obstacles respectively, and
finally reaches the Goal3 with smaller oscillation of the planned trajectory; Figure 9(b) illustrates the path
trajectory of the robot which generates behaviors and two moving robots (Robot1 and Robot2) which act as
the movable obstacles in the environments (from [22]).

As compared with the conventional behavior network and the adaptive behavior method, the genetic
encoding complexity of our algorithm is simplified, and the network performance and the convergence rate
have been greatly improved due to the application of the module’s neural network. Therefore, the robots can
successfully perform obstacle avoidance, goal approach, and behavior-switching control in the dynamic
environments with multiple obstacles. Comparison of the collision-avoidance performances and the reward
value changes of the robot in the environments with walls and obstacles in each learning epoch based on
Evolutionary Learning with Neural Networks (ERLNN) and normal RL are illustrated in Figure 10(a) and
Figure 10(b). From the results, it is obvious that the trajectory in the early stage is not smooth and gets
smooth by evolutionary learning. At last, the robots could move freely without any collision in the
environments. This work demonstrates once again the feasibility of application of the controllers based on
ANN and GA to ERL and shows its potentials regarding adaptability and learning behaviors.

Fig. 7. Comparison curves of average performance for behavior switching control in the different obstacle

environments.

Fig. 8. At the local minimum point P, the robot halted and switched to the collision-avoidance behavior
immediately and performed obstacle avoidance in the different obstacle environments based on behavior

switch control and follow wall behavior by crossover and mutation.

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

43

Fig. 9. Comparison of the collision-avoidance behaviors in the different obstacle environments: (a) An
example of simulated movement of the robot with neuro-controller for behavior switching to collision-
avoidance behavior in complex dynamic environments with two static obstacles and two moving robots
which act as the movable obstacles; (b) the trajectory of the robot and two movable obstacles (moving

object1 and moving object2) in the environments (from [22]).

Fig. 10. Comparison of the collision-avoidance performances and the reward value changes of the robot in
the environments with walls and obstacles in each learning epoch (one epoch = 100 time steps): (a) The

collision times of the robot in the environment with walls and obstacles using ERL with NN decrease faster
than using normal RL in each learning epoch. At last, the robots could move freely without any collision in

the environments; (b) Changes of the reward values using normal RL and ERL with NN.

5. APPLICATIONS OF PROPOSED ALGORITH

The algorithm proposed in this paper has been partly applied to our simulated humanoid soccer
robotics (see Figure 5.4.2). The experiments have been performed both on the Webots Pro 6.4.0 simulator
and on a real NAO humanoid robot (Figure 11) using the parameters described in Table 2.

5.1. Fitness function definition

At first, we define some functions, for example, B is position of ball, Oi represents an opponent, i =
(1, 2, · · · , 5), Dist(X, Y) is referred to the distance between two objects, Dec is to change the binary code of
the receiver into algorithm, Avg() is average function. Therefore, the fitness function is defined as:

 (11)

where k = 1, 2, · · · , 50 which is the number of individuals. The c2c1 is the binary code of the receiver.

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

44

As the operating environments of the soccer humanoid robot system with five against five are
dynamic and very complex and its decision-making strategy is most important. Therefore evolutionary
reinforcement learning (ERL) for performing cooperation and coordination between the soccer multiple-
robots is used for learning the decision-making strategy, evolving network architectures and connection
weights (including biases) simultaneously, and adjusting parameters of FNN and GA. Furthermore, the
residual algorithm is used to guarantee the convergence of the proposed algorithm to the optimal solution and
can retain a high learning rate of the direct algorithms.

5.2. Reinforcement learning for Behavior switching control

The reinforcement learning tasks for robot navigation focus on learning a policy π : S→A for
selecting actions based on current observed states π(st) = at. Learning the optimal policy π∗ for producing the
greatest cumulative reward over time and ϵ-greedy action selection is used. When converged to the true state-
action values, then the greedy policy for selecting actions is optimal according to the following criterion:

a∗(x) = argmax Q(x, a′) (12)

b∈A

the reinforcement learning for Behavior Switching Control (BSC) are denoted in Algorithm 1. s is state at
time n, s′ is the actual state at time n + 1, a is the action been taken at time n, a′ is the action been taken at
time n + 1. 0 < γ < 1 is the discount factor and η(s, a) is a learning rate parameter of the state-action pair (s, a)
at time step n (0 < η < 1). A is the set of possible actions and r is the reward the agent receives when action a
is taken in state s. The g(s, a, s′) is the cost as s, a, s′ are defined previously. The state-action functions for
other states and actions remain unchanged.

ALGORITHM 1: RL-learning for BSC
1 /*—-Phase 1-initialization—-*/
2 Initialize ANN and the humanoid robot system
3 qX,qY,qA (quantization of (x, y,a) configurations)
4 N ← 40 {number of episodes for Q-learning}
5 Q(s, a) ←0 (∀s, a)
6 episode←0{actual episode}
7 r←{immediate reward values for all positions}
8 /*—-Phase 2-finding a policy—-*/
9 repeat
10 episode←episode + 1; initialize s′
11 Get current state
12 Obtain Q(s, a) for each action by substituting

current state and action into the neural network
13 Robot moves and gets current state
14 Choose a from s using ϵ–greedy exploration

derived from Q(s, a).
15 a∗(s) = argmaxa′∈A Q(s, a′)
16 if collision occurred then
17 reinforcement = −1 and back to theposition

before collision.
18 Qtarget (s, a) = g(s, a, s′) + γmaxa′∈A Q(s′, a′)
19 use Qtarget to train ANN in Fig. 3.4.2
20 end
21 /*—-Phase 3-update Q(s, a)—-*/
22 repeat
23 Take action a, observe s′, r
24 Update the state-action function Q(s, a):
25 Qn(s, a)←Qn−1(s, a)+
26 ηn(s, a)[r+γmaxa′∈AQn−1(s′, a′)−Qn−1(s, a)]
27 s←s′
28 until s is terminal
29 Repeat 10-20
30 until episode = N

Fig. 11. The experiments have been
performed both on the Webots 6.4.0 simulator

and on a real NAO humanoid robot with its
21 degrees of freedom using the parameters

described in Table 2.

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

45

5.3. Fuzzy decision-making applications
The complex decision-making task is divided into multiple learning subtasks that include dynamic

role assignment, action selection including obstacle avoidance, goal approach, and behavior-switching
control, and action execution which constitute a hierarchical learning system to learn each subtask at the
various layers.

 (a) (b)

 (c) (d)

Fig. 12. Some results of the proposed algorithm have been successfully applied to our simulated humanoid
robot soccer team CIT3D2010. Some scene frames for the CIT3D (blue) to participate in official RoboCup
ChinaOpen2010 Competition were shown: (a) the player of the simulated humanoid robotics soccer team

CIT3D launched an attack on the opponents (red) goal and won by one point at 56.06s; (b) the player of the
CIT3D with ball was intercepted by an opponent player and tried to pass the ball to teammate at 158.06s; (c)

the player of the CIT3D launched an attack and shot at the opponent goal at 26.34s; (d) the player of our
humanoid robotics soccer team CIT3D broke through and launched an attack on the opponent goal at

147.74s.

5.4. The solved key problems

In the applications of proposed algorithm, we have focused on solving the following problems:
1) Consider the humanoid soccer robots require fine tuning, particularly, gait optimization for improving

the speed of individual robots, the trajectory precision, and the gait stability;
2) The ERL techniques with ANN have been used to find optimal parameter sets for various humanoid

robot behaviors;

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

46

3) A behavior-switching of the humanoid robots is sped up, for instance, from “FORWARD” action
switching to ”LEFT” or ”RIGHT” action. The fast speed switching plays a critical role in the humanoid
soccer robotics games;

4) The humanoid soccer robotics agents could escape successfully from the trap of a local minima and
avoid motion deadlock status (st+1=st), converge rapidly to optimal solution with various learning rates,
and reduce the oscillation of the planned trajectory between the multiple obstacles using various schemes
including “crossover and mutation”, “simultaneous learning”, and “novel modified error function” that
will be discussed in detail in another article.

Fig. 13. A player (red) of the real CIT3D2010 launched an attack and shot at the opponent goal in the real
environments.

(a) (b)

Fig. 14. (a) our simulation humanoid robotics soccer team CIT3D which won the the 2nd place of the official
RoboCup World Championship (2011) on 5-11 July, 2011 in Istanbul, Turkey; (b) The cup of the 2nd place

for RoboCupSoceer 3D Simulation League.

IJRA ISSN: 2088-8708 �

Towards Behavior Switch Control for an Evolutionary Robot Based on RL with ENN (Jingan Yanga)

47

These results have been successfully applied to our simulated humanoid robot soccer team CIT3D
which won the 1st prize of the official RoboCup Championship and China Open 2010 (July 2010) and the
2nd place of the official RoboCup World Championship (2011) on 5-11 July, 2011 in Istanbul as shown in
Figure 12, Figure 13, and Figure 14.

6. CONCLUSIONS AND FUTURE WORK

This work has successfully constructed behavior-based control obstacle avoidance, goal approach,
and behavior-switching learning modules of an autonomous robot. The novel modules are not required to
have complete environmental knowledge and have more simple architectures which can be easily extended to
more complex structures. In our experiments, a neural network modelling the robot behaviors is conceived
using evolutionary learning when encountering obstacle. The obstacle avoidance behavior, goal-approach
behavior, and behavior-switching modules are performed using the evolved ANN controller from the
population and the hand coded knowledge-based controllers which were not dependent on rules assigned
previously, but depended on the knowledge acquired from the environments via autonomous evolutionary
learning.

The main contributions of the proposed algorithm: 1) RL-EANN algorithm evolves network
architectures and connection weights (including biases) simultaneously and emphasizes the behavioral links
between parents and their offspring in evolution, such as weights training after each architectural mutation
and node splitting; 2) can perform the decision-making strategy and parameters adjustment of FNN and GA
by learning; 3) can escape successfully from the trap of a local minima and avoid motion deadlock status
(st+1=st) of humanoid soccer robotics agents, and reduce the oscillation of the planned trajectory between the
multiple obstacles by crossover and mutation; 4) can perform behavior switching and behavior-based control
obstacle avoidance effectively using evolved neuro-controllers; 5) can perform closer cooperation and
coordination between the teammate agents by evolutionary learning.

Our future works will focus on developing neurocontrollers with architectures like the one presented
here for real mobile robots and humanoid robotics in the real environments and making further research on
the effect of changes of crossover rate and mutation rate on the best performance and average performance of
the multi-robot systems.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers and the editors for their helpful
suggestions and comments for improving quality of this paper.

REFERENCES
[1] Baluja S. 1996. ”Evolution of an artificial neural network based autonomous vehicle controller,” IEEE Transactions

on Systems, Man and Cybernetics Part B: Cybernetics, 26(3):450–463.
[2] Barto A G, Sutton R S and Brouwer P S. 1981. ”Associative search network: a reinforcement learning associative

memory,” Biol. Cybern, vol.40, pp.201–202.
[3] Beom H R and Cho H S. 1995. ”A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement

learning,” IEEE Transaction on System, Man, and Cybernetics, 25(3):412–425.
[4] Brooks R A. 1991. ”Intelligence without representation,” Artificial Intelligence, 47(1-3):139–159.
[5] Dorigo M and Schnepf U. 1993. ”Genetics-based machine learning and behaviour based robotics: a new synthesis,”

IEEE Transactions on Systems, Man, and Cybernetics, 23(1):141–154.
[6] Dorigo M. and Trianni V. 2004. ”Evolving self-organizing behaviors for a swarm-bot,” Autonomous Robots, 17(2-

3):223–245.
[7] Fern´ andez Le´ on J A, Tosini F M, Acosta G G, and Acosta H N. 2005. ”An experimental study on evolutionary

reactive behaviors for mobile robots navigations,” Journal of Computer Science & Technology, 5(4):183–188.
[8] Floreano D and Mondada F. 1998. ”Evolutionary neuro-controllers for autonomous mobile robots,” Neural

Networks, 11(7-8):1461–1478.
[9] Floreano D and Urzelai J. 2000. ”Evolutionary robots with on-line self-organization and behavioral fitness,” Neural

Networks, Elsevier, 13(4-5):431–443.
[10] Floreano D and Urzelai J. 1999. ”Evolution of Adaptive-Synapse Controllers.” In D. Floreano et al. (Eds.),

Advances in Artificial Life. Proceedings of the 5th European Conference on Artificial Life, Berlin: Springer Verlag.
(ECAL’1999).

[11] Garc´ ıa-Pedrajas N, Ortiz-Boyer D, and Herv´ as-Mart´ ınez C. 2006. ”An alternative approach for neural network
evolution with genetic algorithm: crossover by combinatorial optimization,” Neural Networks, Elsevier, 19(4):514–
528.

[12] Goldberg, D. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley,
1989.

 � ISSN: 2089-4856

IJRA Vol. 1, No. 1, March 2012 : 31 – 48

48

[13] H¨ ulse M, Wischmann S, and Pasemann F. 2004. ”Structure and function of evolved neuro-controllers for
autonomous robots,” Connection Science, 16(4):249–266.

[14] Kamio S. and Iba H. 2005. ”Adaptation technique for integrating genetic programming and reinforcement learning
for real robot,” IEEE Transactions on Evolutionary Computation, 9(3):318–333.

[15] Kim Jong-Hwan, Kim Ye-Hoon et al. 2009. ”Evolutionary multi-objective optimization in robot soccer system for
education,” IEEE Computational Intelligence Magazine, 4(1):31-41.

[16] Krcah P. 2008. ”Towards efficient evolutionary design of autonomous robots,” Springer-Verlag Berlin Heidelberg,
G.S. Hornby et al.(Eds.): ICES 2008, LNCS 5216, pp.153–164.

[17] Liu H W and Iba H. 2003. ”Multiagent learning of heterogeneous robots by evolutionary subsumption,” Lecture
Notes in Computer Science, LNCS 2724, pp.1715–172, Springer, Berlin, Heideberg.

[18] Lucas S M and Kendall G. 2006. ”Evolutionary Computation and Games,” IEEE Computational Intelligence
Magazine, 1(1):10–18.

[19] Mahadevan S and Connell J. 1992. ”Automatic programming of behavior-based robots using reinforcement
learning,” Artificial Intelligence, 55(2-3):311–365.

[20] Moriarty D E et al. 1999. Evolutionary algorithms for reinforcement learning. Journal of Artificial Intelligence
Research, vol.11, pp.241–276.

[21] Meeden L A. 1996. ”An incremental approach to developing intelligent neural network controller,” IEEE
Transactions on Systems, Man and Cybernetics Part B: Cybernetics, 26(3):474–485.

[22] Min Hyeun-Jeong and Cho Sung-Bae. 2009. ”Adaptive behaviors of reactive mobile robot with Bayesian inference
in nonstationary environments,” Applied Intelligence, Springer, 33(3):264–277.

[23] Murray A and Louis S J. 1995. ”Design strategies for evolutionary robotics,” In E. A. Yfantis, editor, Proceedings of
the Third Golden West International Conference on Intelligent Systems, Kluwer Academic Press, Las Vegas,
Nevada, USA, pp.609–616.

[24] Nelson A L, Barlow G J, and Doitsidis L. 2009. ”Fitness functions in evolutionary robotics: A survey and analysis.”
Robotics and Autonomous Systems, 57(4):345-370.

[25] Nolfi S. 1997. ”Using emergent modularity to develop control systems for mobile robots,” Adaptive Behavior, 5(3-
4):343-364.

[26] Nolfi S and Floreano D. 2000. ”Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-
Organizing Machines,” MIT Press, Cambridge, MA.

[27] Schmidt M D and Lipson H. 2008. ”Co-evolving fitness predictors,” IEEE Transactions on Evolutionary
Computation, 12(6):736–749.

[28] Sutton R. S. and Barto A. G. Reinforcement Learning: An Introduction, Adaptive Computation and Machine
Learning. Cambridge, MA: MIT Press, 1998.

[29] Tabuse M, Kitazoe T, Shinchi T, and Todaka A. 2002. ”Evolutionary robot controllers with competitive and
cooperative neural networks,” Artificial Life and Robotics, 6(1-2):52–58.

[30] Tabuse M, Shincht T, Todaka A, and Kitazoe T. 2003. ”Evolutionary robot with competitive-cooperative neural
network,” Transactions of Information Processing Society of Japan, 44(10):2503–2513.

[31] Trujillo L, Lutton E, Lutton E, and de Vega F F. 2008. ”Behavior-based speciation for evolutionary robotics,” in
Proc. of GECCO08, July 12-16, Atlanta, Georgia, USA.

[32] Vanneschi L, Tomassini M, Collard P, and Clergue M. 2003. ”Fitness distance correlation in structural mutation
genetic programming,” Lecture Notes in Genetic Programming, LNCS 2610, pp.455–465, Springer-Verlag, Berlin
Heideberg.

[33] Wang H Y. 2000. ”Research on integration of the evolutionary robot behaviors based on neural network,” Hefei:
Hefei University of Technology, pp.36–57.

[34] Wang H Y, Yang J A and Jiang P. 2000. ”Research on evolutionary robot behavior by using developmental
network,” Journal of Computer & Development, 37(12):1457–1465.

[35] Yang J A and Zhuang Y B. 2010. ”An improved ant colony optimization algorithm for solving a complex
combinatorial optimization problem,” Applied Soft Computing, 10(2):653–660.

[36] Yang J A and Wang H Y. 2002. ”Research on integration of the evolutionary robot behaviors based on neural
network,” Journal of Shanghai Jiao Tong University, Vol.36, sup. pp.89–95.

[37] Yao X. 1999. ”Evolving Artificial Neural Networks”, in Proceedings of the IEEE, 87(9):1423-1447.
[38] Zagal J C and Ruiz-del-Solar J. 2007. ”Combining simulation and reality in evolutionary robotics,” Journal of

Intelligent and Robotic Systems, 50(1):19–39.

