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This paper proposes a behavior-switching contrategy of an evolutionary
robotics based on Atrtificial Neural Network (ANN)dGenetic Algorithms
(GA). This method is able not only to construct teeforcement learning
models for autonomous robots and evolutionary rabotiules that control
behaviors and reinforcement learning environmeantsl, but also to perform
the behavior-switching control and obstacle avoiganf an evolutionary
robotics (ER) in time-varying environments with &a&nd moving obstacles
by combining ANN and GA. The experimental resultstioe basic behaviors
and behavior-switching control have demonstrateat thur method can
perform the decision-making strategy and paramesetsoptimization of
FNN and GA by learning and can escape successfolty the trap of a local
minima and avoid “motion deadlock” status of humidnsoccer robotics
agents, and reduce the oscillation of the planmegtdtory between the
multiple obstacles by crossover and mutation. Sogsalts of the proposed
algorithm have been successfully applied to ouruktion humanoid
robotics soccer team CIT3D which won the 1st prize RoboCup
Championship and China Open 2010 (July 2010) an@tigeplace of the
official Robo Cup World Championship (2011) on 5-1ily,J 2011 in
Istanbul, Turkey. As compared with the conventidmethavior network and
the adaptive behavior method, the genetic encodimigplexity of our
algorithm is simplified, and the network performare the convergence
rate p have been greatly improved.
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1. INTRODUCTION
1.1. Evolutionary Robotics

Evolutionary robotics has been an active researeh that applies artificial evolution to construct
control systems for autonomous robots. This is asgromising methodology for the autonomous
development of the robots, in which their behavames obtained as a consequence of the structusaling
between a robot and environment [37][26]. In eviohary robotics, a robot's perception-action lo@p i
determined by a control mechanism that is artificial’olved [31]. Many works have proposed evolusign
robotics control systems using evolutionary adamtatof artificial neural network [25][8][21][1], getic
programming [32][14], and a learning classifier eyst[5]. Artificial neural networks are commonly
employed to evolve a robot controller [11][29], aeudl evolutionary algorithm is used to design anth@in
ANN for solving a given task. Many attempts for oblzontrol and an evolutionary algorithm have fazlis
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on developing autonomous robots inspired by aniraats humans that have robust adaptation and stable
behavior in changing environments [16][33]. Recexsearches have put even more emphasis on thesfitnes
functions used in evolutionary robotics [24][27][4h order to enable the robots to operate normially
unforeseen and dynamic circumstances, the robost have the ability to evolve their behaviors. hist
paper we establish the modules for obstacle avoaldrehavior, goal approach behavior, and behavior-
switching control based on combination of artificidural network (ANN) and genetic algorithm (GA)
which allow the robots itself to sense their enmireents and have self-adaptable function.

1.2. Evolutionary Reinforcement Learning and Adaptation of Behavior Control

In a natural system, animals do not only adapt neirenmental changes, but they can also
accumulate adaptations. They can store “knowledgett a previously encountered environments andt use
to alter their behaviors when faced with a speeificironments again. This process is called leamingn it
occurs in a lifetime and evolution when it occunsai lineage [7]. In other words, the agent adastfi
appropriate for different environments by evolvidgferent behaviors. Robot learning is a dynamic
continuous mechanism. ER is one of a host of maclgarning methods that rely on interaction withd a
feedback from, a complex dynamic environment teedgynthesis of controllers for autonomous age2vs [
Only by constant study can the robot improve betseown adaptability, and2 acquire knowledge Hying
on constant interaction with the dynamic environtaeRinally, the robot can learn to move in the nmkn
environment by repeatedly adjusting the environmenmtodule and its own module. This is what Brooks
called behaviorism thought [36][34]. He thoughttttize effective way to design an intelligent rosbbuld
not be like traditional artificial intelligence, i,ecompletely based on symbol inference "top-dowit
should be like the evolutionary mechanisms of ti@obical organisms who use "bottom-up” approach
based on perception-action, and learning by intergavith the environments. In this work, we desigra
simulation environment of robot navigation and aoletionary robot module. The strategies for ohstac
avoidance and the approach of the robot’s navigdti] in the unknown environments are regardethas
robot’s basic behavior. The ability of the robotiogointly apply many basic behaviors to its eomiments is
called combined behavior. The process that thetratib/ates some basic behavior at some momealledc
behavior switching. The robot's behavior and ithdgor switching are controlled by using FFNN (Feed
Forward Neural Network) and PNN (Probabilistic NsulNetwork) [10][30][6][13][22]. ANN-based
controllers consist of many basic network modulesch module is a subnetwork with the standard uhifie
structure. This method may effectively reduce thework computing complexity and the encoding
complexity, and also speed up the evolutionary. rédte then directly carry on the encoding evolution
various modules based on genetic algorithm. Thidutonary process may be regarded as reinforcement
learning process of the robots.

Finally, we demonstrate by the results of the sated experiments that these novel modules do not
require the complete environmental knowledge, &edt structures are simple and can be easily egtbiol
more complex structures, because the robots haedf-adaptive ability to learn from their experiescand
the environments.

1.3. Main Challenges in ER and Contributions

One of the main challenges in ER is to discover tndhodel different adaptation mechanisms.
Most of the works in ER consider the artificial ew@dn of neuro controllers as one of these adaptati
mechanisms [26].

It is considered a feasible methodology to devedapnomous agents that can reveal conscious
abilities. Artificial evolution differs from otherebrning schemes because it works on a population of
different individuals based on a selectionist applp rather than a goal directed one.

Thus, major contributions of this paper are sumpeatias follows: (1) proposed a behavior-
switching control strategy of an evolutionary rabstbased on ANN and GA for implementing robotics
navigation in the unknown environments; (2) desigaad built behavior-switching learning modulesaof
evolutionary robot; (3) the proposed algorithm emtape successfully from the trap of a local minima
jumps over the region containing a local minimuninpdy crossover and mutation, and perform behavior
switching and obstacle avoidance effectively by letionary reinforcement learning; (4) the genetic
encoding complexity is simplified using the neuratwork modules; (5) the proposed algorithm hasebett
performance in convergence speed, solution vanatitynamic convergence behavior, and computational
efficiency than the path planning method based erré¢hl-coded genetic algorithm with elitist modehis
behavior-switching controller can easily be extehtteother applications by adjusting control parersof
ANN and GA and physical constraints.
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2. RL-ENN AND EVOLUTIONARY ROBOTICS
2.1. Reinforcement Learning witn ENN

The objective of reinforcement learning is tovsotlecision-making tasks through trial and error
interactions with the environment. The reinforcetrearning [20] is referred to learning for ageatrhap
the environment state to action in order to maxéntie total reward and obtain the the maximum cativa
reward value of state-action pair. Formally, tisislefined as a Markov decision process using the space
S, action A, and the rewards R.

Definition 2.1 A Markov decision process is dedo#s(S,A, r,y, p), where S=(s1, s2, - - - , sm) is
the state space, A=(al, a2, - - -, an) is theraspace, r:SxA-R is the reward function of the ageng [0,
1) is the discount factor which reflects the notioat rewards depreciate by facterl, and p: SxA->A is the
transition function, whera is the set of probability distributions over stapace S.

The closer the discount factpis to 1 the greater the weight is given to futtgi@forcements.

Definition 2.2 A fitness function is a particulaypé of objective function that prescribes the
optimality of a solution (for example, a chromosornime a genetic algorithm) so that the particular
chromosome may be ranked against all the othernubsomes. Optimal chromosomes, or at least
chromosomes which are more optimal, are allowethreed and mix their datasets for producing a new
generation that will hopefully be even better.

Definition 2.3 For any policy and any state s, the value of policin state s is denoted as V (s)

which is the expected discounted cumulative revilaedagent gets and is formulated as follows:
M

V(s = = Y¥Elreex/r, s =9 (1)
k=0

Definition 2.4 For any policy and any state s, the expected return of takingraetin state s and
following policy n afterward is denoted as Q(s, a) which is the ebgolediscounted cumulative reward the
agent gets and is defined as follows:

Definition 2.5 The immediate reward, for all statethe state space is defined as:
1) The reward for non-terminal states: r = 0.
2) The reward for terminal states:
a) The reward for the goal state: r = 1.
b) The reward for invalid states: r = 0.
¢) The reward for obstacle states: r = —1.
In state €S, an action@A is executed. The agent experiences a state ti@nst—st+1 and obtain a reward
rt+1 € R. The objective of the agent is to maximize éwaird Rt defined by [28]

T
R=2>_r; (2)
Et+1
where T is the time reaching the final state. TheestsO, s1, - - -, sT is called an episode.

The decision of which action to take in a certdatesis determined by the policy
(s, a) = p(alsyseS )
which denotes the probability of taking action atate s. Q-function for a poliayis defined as

(s, @ =ExR/a =s,a=aj (4)

which denotes the expected reward of taking a@ionstate s and following polieyafterward.

The task of a reinforcement learning robot is rihea policyr : S—A for selecting actions based on current
observed stateg(st) = at. Learning the optimal poliey for producing the greatest cumulative reward over
time is denoted as follows:

m'(s) = arg Taﬁr(s,a) + V7 (d(st ar))] (%)

where the optimal action in state s is a that maémthe sum of the immediate reward r(s, a) andrétue
(discounted by) of following the optimal policy. Thé(st, at)(next state given st and at) is defined state
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transition function. Vx is the maximum discounted cu mulative reward thatagent can obtain starting
from states(s, a).

When an agent is at some environmental state eihéorcement learning method does not inform thenag
to adopt the corresponding correct actions, but dblected action’s quality is evaluated by using th
reinforcement signal provided by the environmenmnt] ¢he optimal strategy is obtained through trizda
error unceasingly to get best mapping from statctmn. The reinforcement learning structure dreddtate-
action pair are shown in Figure 1.

The environment for an agent is described as tite set: S = {si|&S}, the action set that an agent
performs is expressed as: A = {afa}. Under the current state si, an agent seledis@a@i and perform it.
At the moment the state st transfers to st+1, dndims the reinforcement signal rt from the envinemt.
Task of agent’s reinforcement learning is to obtdia maximum cumulative reward by using a control
policy .

Selectedaction

A

Statesignal
S

y

Environment Agent with RLsystem

Reinforcemensignal

3 S S
o » & » ... —>
r r ir
Fig. 1. The blockdiagramof reinforcementearningstructure andstate-actiorpair for robot behavior
control.

Assume that an agent is a point robot with simmglifieotor actions: forward, left, right, and
backward. All actions can be tried in all stateke Tobot world and its state of transitions areardgd as a
function of the present state and action taken. felsk of the robots is to reach a given goal stiethe
shortest path. For reinforcement learning robotseeveard function given any current state, nextestand
action, st, st+1, and a, is given by equation (1).

0 if st+1 = st
Mse,See1 — 1 if st+1 = given goal state (6)
-1 if st+1 = st (obstacle state)

The negative numerical reward in equation (1) disages agents attempting an action against the
world boundary. This action does not change thie sththe environment.

The basic idea of reinforcement learning is onl@sning which combining together the control
process and the learning process.

2.2. Evolutionary Neural Network

The hierarchical network architecture of ENN isigeed based on the biological evolutionary
genetic algorithm. The network connection weighi® network topology, the excitation function otka
node in the network, and learning rules can bevexbfor performing the global search widely inslution
space for network weight training until the optinslution of the network architecture with leastame
square error between the network output and gaplubwf the given training set are found and fooiding
the problem to being trapped in a local minimumsemuby gradient descent learning. The evolution of
learning rules can be regarded as a process ofnfiephow to learn” in ANN where the adaptation of
learning rules is achieved through evolution [37].

2.3. Evolutionary Robotics Based on Reinforcement

Learning with ENN Evolutionary robotics (ER) is awn technique for the automatic creation of
autonomous robots and a subfield of behavioral iehat is concerned with the application of evauoary
computation methods to the area of autonomous igshodntrol systems. One of the central goals oi€ER
develop automated methods that can be used toeseolwmplex behavior-based control strategies.
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In the design process for an intelligent robot, sokey questions are: 1) how to realize the
“behaviorism” idea; 2) how to learn the behaviod attions [9] by interacting with the environmeng3;
how to acquire knowledge from the environments Hrar experiences; 4) how to control the topolobica
evolution trend of network modeling and complexitynetwork model efficiently.

Among the learning methods, reinforcement learnsiegms to be most suited for agent-based
applications for supporting the self-improvement afpopulation of solutions [28]. The reinforcement
learning is to learn what to do, how to map sitwdito actions so as to maximize a numerical rewayohl
and is usually based on the idea that the robatives rewards (feedback signal), which are positive
negative scalar values, based on its performan@][[3][19]. Depending on the reward, the agent
reinforces (positive reward) or decreases (negatveard) its confidence on the correctness of itsect
behavior. The rewards are given by an externaltt@ady an evaluation function (reinforcement fuma}
internal to the robot controller. The robot chooses act in the environment. The condition andestat
changed after the environments accept this actime reinforced signal reward (or penalty) is créate
simultaneously and is fed back to the robot. Thbotochooses next action, again according to the
reinforcement signals and the current environmeatate. The principle of the choice is to make the
probability of receiving a positive reward increaSée action chosen not only affects the curreatard
value, but also affects the environmental condgtiand states for the next choice, as well as tla fi@ward
value [23][17]. A meaningful combination of the peiples of neural networks, reinforcement learnisuggl
evolutionary computation is useful for designingaig that learn how to solve a complex task angtaida
their environment through interaction with the eoaiment.

Here, we consider a mobile robot actuated by us$ifigand right two caterpillar bands. Each
caterpillar band has four options: forward, lefght, and backward. Their codes are: O=forward eft=I
2=right, 3=backward. The behaviors and actions oflmt are implemented by changing speeds of tite le
and right wheels based on reinforcement learningateetwork. Figure 2 shows neural network architee
including the 8 infrared sensors data inputs, Sléidneurons with sigmoid activation function pidao
output neurons representing wheels commands. Emgoafi the states and the actions are illustrated in
Table 1.

S Hidden neurons
S
Sy
5 Two output neurons
% S AW
ol
< asitie
p TN
£ PRIRK
SRS
s ey
I
dust 17””/'&\
Adust ,
bias=1

Fig. 2. Neural networlarchitecturdor the obstacleavoidanceusing neural modelling of the robot
behaiors.
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Tablel. Encodingof the statesand theactions

The states 0 14 15
Encodingof the states 0000 1110 1111

The actions forward left right  backforward
Encodingof the actions 00 01 10 11

2.4. Relationship BetweenGA and Simulator

The relationship between the genetic algorithm (@Aj the simulator is illustrated in Figure 3.
Obviously, the simulator and the GA have the déférfunctions. The GA is responsible for transfegri
genotype to the simulator, and decoding genotypa aural network and/or input sensor information
(phenotype). The phenotype mainly describes annigsggs traits and the organism’s genotype descritses
genetic makeup. Two organisms can have the samaopipe but have different genotype if one is
homozygous dominant and the other is heterozygous.

Suppose the fitness values of individuals 1, 2, -, n be f1, f2, - - -, fn respectively, then the
probability of an individual selected for reprodoct based on roulette wheel selection (see Fig3) i
calculated by following equation[12]:

GA Processing Simulator

| B 1 NeW | B 1
1 1 1 1
| Recombination | | 9enotype Genotype |
| crossover &  P(+l) decoder |
i mutatior i i i
i od 1 i | Phenotypes i
: genotype : 1 control & !
: P(t) ! ! sensor '
! ! | parameters | !
1 1 1 1
: Roulette | : Interaction with | |
: Wheel i Fitness environment i
! selection : : (phenotype :
! ! ! evalution) !
1 1 1 1

Fig. 3. Relationship between genetic algorithm sintulator

;i
pi =0 0O 0 7
it fj
The simulator uses this information to execute &mion process, and transfers the simulated rgsult

namely, the robot fitness values, to the GA proogssThe interactive process between the robot bad t
environment is detailed as follows:

Fitness = 0
t = 0
while (t < Nul)do
reads the sensor inputs
t = t+1
compute and return to Fitness (8)

where t is the length of a time step, and Nul & tipper limit of the simulation running time stepie
fitness function computation has many differentamiaccording to the different experiments. Thdsa/a
are the basic steps of only one simulated operakon each generation of the GA, each individuathi@
population has to pass the simulated process ahotee interactive process with the environmergagding
the sensor inputs is for computing the output aftcm network, then for moving and updating posis®f a
robot according to the output of control network.
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3. OBSTACLE AVOIDANCE BEHAVIORS
We have designed the behaviors for avoiding movabigtacles which get nearer from various
positions and directions using the behavior netvastt the proposed method.

3.1. Fitness Function for ObstacleAvoidance

The fitness function is the heart of an evolutionawynputing application [24]. The fitness function
is responsible for determining which individualsiftrollers in the case of ER) are selected foraépction.

If there is no fithess function, the individual Endomly selected. Successful evolution of the artwus
robot controllers is ultimately dependent on therfolation of suitable fithess functions that areatde of
selecting successful behaviors. The performanceefmh evolved controller is evaluated by using the
different fitness functions.

Therefore, for the autonomous robots interactinth whie environment, they are given an external
reward or penalty (r = rt) in some state st. Fostable avoidance behavior r = -1 upon collisionhvanh
object and r = 0 otherwise. In order to get a optipolicy, the reward function should be fixed. Ezample,

a robot that cannot avoid an object soon becomeoinilined when its path is blocked, the robot coltdro
would obtain a negative fitness value.

The internal reinforcement signal is derived that represents the immediate rewasitjasd to the
robotics system in terms of correctness of theoastiexecuted so far and also is the predictiorr exfrthe
total reward sum between two successive steps:

r«(t) = r +yV Cxt+1) = V (xt) 9)

where r represents the direct effect of actiontenttansitionyV (Cxt+1) — V (xt) is the estimation of the
improvement of states. The is used as the error to train the neural networé&stioned above.

If the desirability of a state is associated witheatain action Qt, at), the equation (5) for the prediction
error becomes:

r«(t) = r +yQ(xt+1, at+1) — Qlxt, at) (10)

where the parameter(0<y<1) determines the present value of the future rdsvalvlain differences between
two reinforcement learning approaches are to caleul) state evaluations Vx{+1) and 2) state-action
evaluations Qkt+1, at+1).

3.2. Network Architecture and Encoding

An autonomous robotics can acquire signals from gbal sources using approach sensor for
locating the goal sources, and then should appraachreach the goal sources as soon as possibke. Th
behavior is just opposed to obstacle avoidance v@harhe network architecture design of the apphoa
behavior is also relative to the network architeetdesign of obstacle avoidance behavior. Behasoatrol
of the robots is performed by using a module nenetvork. The whole network consists of multipleira
network modules (g0-g7).

All modules have a similar topological architectumeluding two input nodes, one hidden layer
with two nodes, and one output node. Reasonabéetsmh of the node number in the hidden layer sthoul
synthetically take complex degree of the networkhdecture and permissible errors into accounth#
number of nodes in the hidden layer is too few, tieéwork may not be trained at all or the network
performance gets very poor.

If the number of the nodes in the hidden layeo@many, although this can reduce the errors of the
network system, but may lengthen training time b hetwork at the same time. On the other hand, the
training of neural network is easy to fall into tleeal minimum not to be able to obtain the optimswiution
which also is one of main reasons for over-fittingneural network training and learning.

Our preliminary simulation experiments have alsoved that the performance of the crossover
mapping method was not satisfied. When a robot diestly forward in free space, in order to turn to
examine some goal source, it will reduce the spefethe motor on the side of the sensor approaching.
Therefore, our algorithm should directly map thé &nsor input into the left motor, and the rigkenhsor
input into the right motor, i.e., only connectiorights (w01 between g0 and g1, w03 between g0 8nd g
w21 between g2 and g1, w23 between g2 and g3, wdbeen g4 and g5, w47 between g4 and g7, w65
between g6 and g5, and w67 between g6 and g7earaimed. The whole network structure of the apgroac
sensor is similar to that of the touch sensor. Batmain difference is that the input of the apphoaensor
makes use of the difference between the left sesigoal and right sensor signal (See Figure 3.4nl)he
experiments, we not only use a chromosome withi&6(6x8+8=56 bits), but also add 6 bits to evdive
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related sensor parameters: 3 bits are used fordergthe exploratory ranges of the sensors, andtther 3
bits are used for encoding the intervals betweersémsor ends. A "ci” in Figure 4 represents thmdimg of
wij (j=1,3,5,7).

z Righ msb—{ g0 gl — Righmsb

° <
§ Righlsb | g2 g3 | Righlsb §
= o
@ <
§ Left msb — g4 g5 — Leftmsb 2
B Leftlsb __[ g6 g7 |__ Leftlsb

Gene code 0| g7/ g6 - | cO[ g1 gO| ci
Sensor parameter coding: rang interval

Fig. 4. Network architecture and encoding of apphoaehavior control of the robot.

3.3. Parameter Setup for Obstacle Avoidance

Here, the GA algorithms apply a single-point cressdo artificial chromosomes with 56 bits. The
algorithm uses a special bit mutation pattern sd tmly one bit in the chromosome turns over. Rivet
choose one chromosome to execute mutation bas#teanutation rate, and then stochastically choose o
bit to turn over in the selected chromosome. Theeef mutation rate that must be divided by the
chromosome bits can be equal to the mutation r@teally used in a GA algorithm.

Elitism was implemented by finding the fittest indivals n in the current generation and copying
them across into the new generation before thedbrgerocess has begun. Elitist selection alwagsemves
the fittest individuals from the population to thexh generation. Therefore, elitist selection insesaa
convergence rate of GA, but elitist selection megd to premature convergence in the GA search gsoce
being trapped in local optima since the inheritedtbndividuals might not be close to the globairop. For
example, if too many individuals are preserved frmme generation to the next or if a 'super’ indivadi (an
individual with a far better fitness than the refsthe population) occurs, then elitism can serigustrease
the chances of the best individual being rapidiplicated within a few generations and filling the ol
population with identical 'siblings’. Once this hagms, the population will tend to stagnate to all@ginima.
Our studies have shown that one way to overconseighio take a higher mutation rate. The effeca tdw
mutation rate on a population reflects few varistianailable to respond to sudden environmental gésn
This means the species is slower to adapt. A highatation rate may damage more individuals, but by
increasing variation in the population could ina®#he speed at which the population can adagtaoging
circumstances. The Elitist selection here has leeglpodied in the following aspects:

1) if the robot does not do anything, accumulate Gesco

2) if the robot goes directly ahead, but does notngiteto avoid any obstacle, and finally crosses the
environment boundary, then the robot would accutewae negative score which takes 0 score;

3) if the robot can correctly perform obstacle avoikahy learning, it can accumulate one positiveescor

4) if the robot can not only complete obstacle avoaamut also go forward at full speed in the freace,
then it has a higher positive score.

The simulation steps is setup 1500 so that thetroBn accumulate one high fithess value in its
evolutionary process, and also learn obstacle awnaiel behavior correctly. The weighted factor ofisioin
punishment takes a value of 10 (determined afterynexperiments). If this factor value is too lowchase
walking distance is far greater than the collismmishment value, some individuals which give arpoo
performance may be regarded as the best individaats may be involved in the heredity operatiorhia
next generation. When this factor value is too hitje pressure on the robot to execute obstaclel@voe
behavior is rapidly increased, and so the usefiddity material in the evolutionary process maydst.

In all experiments to improve the efficiency of thieulation, the size of the population was 40.
These simulation experiments have demonstratedtiieatise of a large population does not enhance the
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performance of the system. The upper limit of thleutation evolutionary operation takes 40 generstio
Another reason is to save time. We observed fromegperiments that a community’s average perforrmanc
enhancement is limited after that community hadwexbabout 3840 generations.

3.4. Simulated Results for Obstacle Avoidance

The simulated experimental results for obstacledarcce in the different environments and analysis
of the results are is illustrated in Figure 5. Aslivas changing the crossover rate and the mutatitm the
simulation experiments also contained two differemtironments: one contained 4 obstacles and tier ot
contained 10 obstacles. The experimental resudtdlastrated in Figure 5(a) and Figure 5(b), respely.

Evolutionary time for an environment containing maobstacles should be longer. The more
obstacles, the more less free-motion opportunitythe collision times will increase. This leads tbbot to
increase its accumulated negative score possasilitin the environment containing 10 obstacles, the
production of the best individual will take 10 gest#ons. However, in the environment containing 4
obstacles, this evolutionary process needs onlgnegtions. The robot’s evolutionary performanceobse
worse in the environments containing more obstatlesause the straight lines of highest score watuat
obtained by the robot have less opportunity to mfmravard. Slightly increasing the crossover ratel an
mutation rate may make the convergence rate slomnd®ut 40 generations’ evolution later, the averag
experimental performance may be accepted. Toodigiossover rate can reduce the GA performanceg sin
its main aim is to have a higher destruction ratgain the highest fitness value pattern. Too higiation
rate has a remarkable effect on GA performance [88ome situations, the system continues to apdoa
only 10 generations more, and the system perforsmamay get worse. However, the convergence rate and
the quality of the solutions are greatly improvedcbmbining parallel GA and crossover mapping.

4. IMPLEMENTATION OF BEHAVIOR SWITCHING CONTROL STRATE GY
4.1. Neural Network Encoding Based on GA

Neural networks are well suited for training withotutionary computing-based methods because
they can be represented by a concise set of tunmdriemeters [30]. A wide variety of neural network
structures have been used. The most common of thesdayered feedforward or recurrent network
architectures. The behavior-switching controllefr&B based on the network modules proposed inpper
is accomplished by combining ANN and GA.

The basic idea of behavior switching control syygités that behavior-switch controller should be
activated immediately and switched to obstacle daoce behavior and follow wall behavior once thecko
sensor finds the obstacles, and the ERL systemstbalange robots’ moving direction rapidly basedtte
basic behaviors and jump over the region with tieall minimum point, and escape from the trap oéloc
minimum and plan their paths to goal again. Furtt@e, the genetic algorithms are used to evolveort
connection weights for providing a global searchthod for network weight training and for avoidiriget
problem to being trapped in a local minimum causgdradient descent learning.

This is very important to multi-robot system ané #imulated and real robotics soccer games. The
approach behavior should also be activated wherrdhet is in the free space. For the basic approach
behavior and approach sensor parameters are géffeete can use the GA to evolve the switching netwo
of the basic behaviors directly.

This experimental environment contained only 10t@&tles and 10 goal sources. This is because the
basic behavior and the sensing parameters embealdlee robot evolve on the basis of this environtém
our experiment, positions, sizes, and shapes ofotistacles, and the positions of the goal sources a
variable.

The numbers of obstacles and the goal sources»am dit 10. The robot’'s design is basically the
same as the one described above, but the appreashrsparameters are fixed, and no longer evolvhidy
GA encoding. This new network structure is illusdhin Figure 6. The chromosome includes 11 module
networks (g0—gl10)(each module network has 6-bibdimg; every weight has 1-bit encoding). Therefore,
the module networks and their connection weightdréx11+8x2+4x2+4=94-bit encoding in all. The frst
module networks are almost the same as the modatigorks in the several sections above. The main
difference is that the output is not directly cocteel to the motor outputs, but is the input of $heond cell
network composed by the other two module netwoBee(Figure 7). The output of the module network
11(g10) determines the basic behavior that wilabgvated. The output of O represents obstacledavaie,
and the output of 1 means approach behavior.
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4.2. Parameter Setup of GA Operator

The robot’s duty is to reach all goals (10) witR#50 time steps. Therefore, the robot which reaches
all goals and do not touch any obstacle will obtaia highest fitness value of 2000. However, if tioisot
touches an obstacle or stops at some time stdqeiavolution cycle (deadlock), its fitness valueustide O.
The fitness values that other robot can have lizdest two fithess values of 0 and 2000. Their chromes
may be used as intermediate mediums of the heredéstapping operation.
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Fig. 5. Comparison between the experimental resulise different obstacle environments: (a) Maximu
fithess and average fitness of the individuals &t gaceration in 4-obstacle environment; (b) Maximum
fithess and average fitness of the individuals at gaoeration in 10-obstacle environment.
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Fig. 6. The neural network topology of behaviortsiing control: the output of the module network@y
has two states: 0 represents obstacle avoidaneibehand 1 means approach behavior.

Because the simulated time steps are reducedpthputation time for each generation is suitably
increased, and therefore the number of individiglmicreased up to 50. The number of the evolutipna
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generations is still 40, and the convergence gasekept approximately the same as the convergeateg in
our previous experiments. Moreover, in this expeninwe use the Elitism strategy to ensure thattmeent
best individual survives to a next generation.

Table2. Functions and parameters of RL and genetic algarith

Functions of RL and genetic algorithm parameters
Learning time of each generation (s) 20-30
Number of individuals 50
Crossover probabilitpc 0.5-0.7
Mutation probabilitypml for increasing links 0.1
Mutation probabilitypm?2 for increasing nodes 0.05
Weight mutation probabilitpm3 0.2
Mutation probability (per gengnv 0.1
Excitation response mutation probabilitgb 0.1
Learningrate » of reinforcement learning 0.3

4.3. Experimental Results and Evaluation

Comparison curves of average performance for behawiitching after the GA operated 10 times
in two different simulated environments are illaséd in Figure 7, and the initial population thaemted
every time all is stochastic. We see from Figurthat the robots walk more easily in the environradnt
which their initial average fitness values are highed can maintain this superiority in the exirawdation
process. After this robot had operated 10 timeshe different experiments, we took the average dine
value, and the obtained result curve is smoothkis &xpresses a more real learning curve thanirhidue
earlier experimental result from one operation only

It should be noted that the robot’s learning curvehe initial phase in this experiment is steeper
than the learning curve in the experiment in thevfmus section. The GA can improve rapidly the
performance of the robot, and establish the comegtping relations from the sensor inputs to thealeor
outputs (actions). One of reasons that this phenomeccurs is to reduce the number of the system’s
behavior outputs. There is only 1 bit which has #irmds of possible outputs in this experiment, inuthe
previous experiments, 4 bits including 16 kindpossible outputs were mapped directly to the medmitrol
(actions to be executed). The second reason ightbarchitecture and the connection weights ofntbeule
neural networks have be evolved using crossovernaumgtion operations. The complexity of the network
architecture is simplified with less nodes and tleggits preferred.

Moreover, the experimental results have demonstréiat the input of the approach sensors may be
reduced to 2 bits, one of them marking goal soorcé¢he left-hand side, and the other marking goaree
on the right- hand side. If the goal sources entisboth sides of the robot, the goal sources reardbot is
processed at first. According to our experimentsemé touch sensor, in particular a front sensactivated,
the robot’s behavior should switch immediatelyte bbstacle avoidance behavior.

4.4. Comparison with Adaptive Behavior Method

We evaluated our proposed behavior-switching cdstrategy of an evolutionary robotics by using
the evolved ANN controller from the population atite hand coded knowledge-based controllers and
compared the results with the adaptive behaviohateproposed by Hyeun-Jeong Min in [22].

In our experiments, the 3D robot simulator and al t¢hepera Il mobile robot are used. The
simulator environment includes: three mobile rold&sbot 1, 2, and 3) which generate behaviors uing
proposed method, three goal objects (Goal 1, 233nand two static circular obstacles. Two of tblkats act
as the movable obstacles.

These two robot-obstacles can only detect and aheidvalls of the fence, and cannot avoid a robot
when they collide with other robots. This simulateay change the angles of the view, and evolutioRdr
was used for parameter optimization and algoritlmification, and for testing performance of the fsgd
method.

At the local minimum point P in Figure 8, the robhatited and switched to the collision-avoidance
behavior immediately and performed collision avoidk in the different obstacle environments based on
behavior switch control and follow wall behavior byossover and mutation, and reduced the oscitlaifo
the planned trajectory between the multiple obstadFigure 9 presents the simulated results obbistacle
avoidance in the different obstacle environmentsbd®3 in Figure 9(a) halts and switches to theisiolh-
avoidance behavior immediately when it finds twdistabstacles and two movable obstacles in the same
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direction at its front and avoids two movable obkgs, fence, and two static obstacles respectiaiyg,
finally reaches the Goal3 with smaller oscillatidntlee planned trajectory; Figure 9(b) illustratée fpath
trajectory of the robot which generates behavioig @vo moving robots (Robotl and Robot2) which act
the movable obstacles in the environments (fronf)[22

As compared with the conventional behavior netwamld the adaptive behavior method, the genetic
encoding complexity of our algorithm is simplifieahd the network performance and the convergenee rat
have been greatly improved due to the applicatioih® module’s neural network. Therefore, the rehmn
successfully perform obstacle avoidance, goal aaproand behavior-switching control in the dynamic
environments with multiple obstacles. Comparisorihef collision-avoidance performances and the rdwar
value changes of the robot in the environments wistls and obstacles in each learning epoch based o
Evolutionary Learning with Neural Networks (ERLNIghd normal RL are illustrated in Figure 10(a) and
Figure 10(b). From the results, it is obvious ttta trajectory in the early stage is not smooth gets
smooth by evolutionary learning. At last, the rabatould move freely without any collision in the
environments. This work demonstrates once agairfaéasibility of application of the controllers badsen
ANN and GA to ERL and shows its potentials regagdadaptability and learning behaviors.

Ity TG0 veith 1%, crmons

Creneratinns
Fig. 7. Comparison curves of average performancedbavior switching control in the different olidea
environments.
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Fig. 8. At the local minimum point P, the robotteal and switched to the collision-avoidance behavio
immediately and performed obstacle avoidance irdifierent obstacle environments based on behavior
switch control and follow wall behavior by crossoamd mutation.
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Fig. 9. Comparison of the collision-avoidance babisvin the different obstacle environments: (a) An

example of simulated movement of the robot withronezontroller for behavior switching to collision-

avoidance behavior in complex dynamic environmauitls two static obstacles and two moving robots

which act as the movable obstacles; (b) the trajgaif the robot and two movable obstacles (moving
objectl and moving object2) in the environmentsr{f{22]).
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Fig. 10. Comparison of the collision-avoidance perfances and the reward value changes of the hobot
the environments with walls and obstacles in eaaming epoch (one epoch = 100 time steps): (a) The
collision times of the robot in the environmenthwtalls and obstacles using ERL with NN decreastefa
than using normal RL in each learning epoch. At ke robots could move freely without any codisiin
the environments; (b) Changes of the reward valsesy normal RL and ERL with NN.

5. APPLICATIONS OF PROPOSED ALGORITH

The algorithm proposed in this paper has beenypagplied to our simulated humanoid soccer
robotics (see Figure 5.4.2). The experiments haentperformed both on the Webots Pro 6.4.0 simulato
and on a real NAO humanoid robot (Figure 11) usirgparameters described in Table 2.

5.1. Fitness function definition

At first, we define some functions, for example, Bdsition of ball,Oi represents an opponent, i =
(1,2, - -,5),Dist(X, Y) is referred to thistdnce between two objects, Dec is to changeitteypcode of
the receiver into algorithm, Avg() is average fuokt Therefore, the fitness function is defined as:

= Avg(T1_ Dist( B, ;) + Dist(();, Dec{eac: )))
Dist( B, Dec(eac; )

Fit

(11)

where k=1, 2, - - -, 50 which is the numbendhiiduals. The c2c1 is the binary code of the ineme
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As the operating environments of the soccer huntamobot system with five against five are
dynamic and very complex and its decision-makingtsgy is most important. Therefore evolutionary
reinforcement learning (ERL) for performing coop@&ra and coordination between the soccer multiple-
robots is used for learning the decision-makingtstyy, evolving network architectures and connectio
weights (including biases) simultaneously, and stitjg parameters of FNN and GA. Furthermore, the
residual algorithm is used to guarantee the correrg of the proposed algorithm to the optimal smtuand
can retain a high learning rate of the direct atpars.

5.2. Reinforcement learning for Behavior switching contol

The reinforcement learning tasks for robot naviatfocus on learning a policy : S—A for
selecting actions based on current observed stégBs= at. Learning the optimal poliay for producing the
greatest cumulative reward over time &ngreedy action selection is used. When convergeletdrue state-
action values, then the greedy policy for selectinions is optimal according to the following eribn:

a(x) = argmax Q(x, & (12)
beA

the reinforcement learning for Behavior Switchingn@ol (BSC) are denoted in Algorithm 1. s is state
time n, $is the actual state at time n + 1, a is the adtieen taken at time n; & the action been taken at
time n + 1. 0 ¢ < 1 is the discount factor amds, a) is a learning rate parameter of the staierapair (s, a)

at time step n (0 g < 1). A is the set of possible actions and r esréward the agent receives when action a
is taken in state s. The g(s, a) s the cost as s, a,are defined previously. The state-action functifoms
other states and actions remain unchanged.

ALGORITHM 1: RL-learning for BSC

1 *—-Phase l-initialization—-*/
2 Initialize ANN and the humanoid robot system
3 gX,qY,gA(quantization ofX, y,d configurations)
4 N — 40 {number of episodes for Q-learning}
5 Q(s, d <0 (vs,
6 episode-0{actual episode}
7 r—{immediate reward values for all positions}
8 *—-Phase 2-finding a policy—-*/
9 repeat
10 episode-episode + 1; initialize s’
11 Get current state
12 ObtainQ(s, @ for each action by substituting

current state and action into the neural network
13 Robot moves and gets current state
14 Choose a from s usire-greedy exploration

derived fromQ(s, a.
15 ax(s) = argmax&A Q(s, d)
16 if collision occurred then
17 reinforcement = -1 and back to theposition

before collision.

18 Q%% (s, § =g(s, a, § +ymaxees QS @)
19 use &% to train ANN in Fig. 3.4.2
20 end
21 [*—-Phase 3-updafg(s, §—-*/
22 repeat
23 Take actiom, observes', r Fig. 11. The experiments have been
24 Update the state-action functiQ(s, a: performed both on the Webots 6.4.0 simulator
25 Qn(S, §=Qn-a(s, 9+ / and on a real NAO humanoid robot with its
gs ';niss’,a)[r”ma"eAQ”'l(s’ )=Qn-4(s, 3 21 degrees of freedom using the parameters
o8 until s is terminal described in Table 2.
29 Repeat 10-20
30 | until episode N
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5.3. Fuzzy decision-making applications
The complex decision-making task is divided intoltiple learning subtasks that include dynamic

role assignment, action selection including obstaaVoidance, goal approach, and behavior-switching
control, and action execution which constitute ardmichical learning system to learn each subtaskeat

various layers.

Tlilnited &

1 CIT [1at half) Playln t=1&7.04

P
)

Tdlnd ted 0

(©) (d)

Fig. 12. Some results of the proposed algorithnehzeen successfully applied to our simulated huidano

robot soccer team CIT3D2010. Some scene framahdoCIT3D (blue) to participate in official RoboCup
ChinaOpen2010 Competition were shown: (a) the plajéhe simulated humanoid robotics soccer team

CIT3D launched an attack on the opponents (red)awhiwon by one point at 56.06s; (b) the playethef

CIT3D with ball was intercepted by an opponent pltagnd tried to pass the ball to teammate at 158(@%
the player of the CIT3D launched an attack and ahtite opponent goal at 26.34s; (d) the play@uof

humanoid robotics soccer team CIT3D broke throughlaunched an attack on the opponent goal at
147.74s.

5.4. The solved key problems
In the applications of proposed algorithm, we hipgeised on solving the following problems:

Consider the humanoid soccer robots require finenguirparticularly, gait optimization for improving
the speed of individual robots, the trajectory [gien, and the gait stability;
The ERL techniques with ANN have been used to fiptintal parameter sets for various humanoid
robot behaviors;
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3) A behavior-switching of the humanoid robots is spga for instance, from “FORWARD” action
switching to "LEFT” or "RIGHT” action. The fast spd switching plays a critical role in the humanoid
soccer robotics games;

4) The humanoid soccer robotics agents could escapmessfully from the trap of a local minima and
avoid motion deadlock status (st+1=st), convergédia to optimal solution with various learning eat
and reduce the oscillation of the planned trajgchatween the multiple obstacles using various meise
including “crossover and mutation”, “simultaneoesiining”, and “novel modified error function” that
will be discussed in detail in another article.

Fig. 13. A player (red) of the real CIT3D2010 labed an attack and shot at the opponent goal inetile
environments.

(@) ' (b)

Fig. 14. (a) our simulation humanoid robotics so¢eam CIT3D which won ththe 2% place of the official
RoboCup World Championship (2011) on 5-11 July,2iiIstanbul, Turkey; (b) The cup tife 2 place
for RoboCupSoceer 3D Simulation League.
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These results have been successfully applied tsiowlated humanoid robot soccer team CIT3D
which won the 1st prize of the official RoboCup Clpéganship and China Open 2010 (July 2010) and the
2nd place of the official RoboCup World Champions{#p11) on 5-11 July, 2011 in Istanbul as shown in
Figure 12, Figure 13, and Figure 14.

6. CONCLUSIONS AND FUTURE WORK

This work has successfully constructed behavioethaontrol obstacle avoidance, goal approach,
and behavior-switching learning modules of an aomoous robot. The novel modules are not required to
have complete environmental knowledge and have siorple architectures which can be easily exterided
more complex structures. In our experiments, aaleuwtwork modelling the robot behaviors is conediv
using evolutionary learning when encountering alistaThe obstacle avoidance behavior, goal-approach
behavior, and behavior-switching modules are peréat using the evolved ANN controller from the
population and the hand coded knowledge-based altams which were not dependent on rules assigned
previously, but depended on the knowledge acquir@ah the environments via autonomous evolutionary
learning.

The main contributions of the proposed algorithm: RL-EANN algorithm evolves network
architectures and connection weights (including&& simultaneously and emphasizes the behaviokal |
between parents and their offspring in evolutiamhsas weights training after each architecturatatimn
and node splitting; 2) can perform the decision-imglstrategy and parameters adjustment of FNN afd G
by learning; 3) can escape successfully from thp tf a local minima and avoid motion deadlockustat
(s+1=s) of humanoid soccer robotics agents, and redus®shillation of the planned trajectory between the
multiple obstacles by crossover and mutation; 4) marform behavior switching and behavior-basedrobn
obstacle avoidance effectively using evolved nexaotrollers; 5) can perform closer cooperation and
coordination between the teammate agents by evalty learning.

Our future works will focus on developing neuroaofiers with architectures like the one presented
here for real mobile robots and humanoid roboticthe real environments and making further research
the effect of changes of crossover rate and mutatite on the best performance and average penfaearat
the multi-robot systems.
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