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1. INTRODUCTION

Rapid progresses in autonomous mobile robots erthlels to autonomously explore unknown
environments of other planets or ocean floors. Beedhere is no prior knowledge about these enwieors
available to the robots, they must be able to hili&denvironment map online and to localize thewesebn
the map concurrently.

Map building is to acquire a model of the surromgdof the robot and localization is to identify the
location and state of the robot in the obtained ehddaps are used for robot localization and naiega To
build a map, robot must be equipped with sens&es damera, sonar, laser, infrared, radar, touckosen
compass and Global Positioning System. Because ohtisese sensors have limited range and measutemen
error, the robot must explore the environment tiddoa complete map. In 80s and early 90s, map lngld
methods were classified into topologic and metdtegories. An example of metric methods is occupanc
grid which represents the map with a network of gngy occupied cells. Topologic methods display the
environment with the use of a list of special lomag which are connected together with a set oésdghese
edges contain information about how the robot reteigf among different places [1].

In order to navigate autonomously and intelligenélynobile robot must have the environment map
and its location on it. In recent years, simultarelmcalization and mapping (SLAM) methods are tgped
to provide a solution for the need of concurrerdalzation of robot and other important objectstlie
environment [2].

In SLAM, mobile robot receives information abouttknvironment from its sensors, processes
them, builds a correct map and localizes itseHfutbnomously explore the environment [3].

Journal homepage: http://iaesjournal.com/online/index.php/IJRA



50 a ISSN: 2089-4856

Several methods have been proposed to solve thldgon which will be discussed in following
section. In this paper, we propose a new inteltigeethod for simultaneous localization and mappitich
minimizes error in map and path. Because of theisirdd features in this problem, we have used
evolutionary algorithm and particle swarm optimiaat

In section 2, we explain simultaneous localizaéma mapping and review current solutions to this
problem. In section 3 we describe the proposedriifig and compare its features to other methodsti®e
4 is dedicated to exhibit the results of experiraehit section 5 we discuss the ideas in the praposgthod
and section 6 is the concluding remarks.

2. SIMULTANEOUSLOCALIZATION AND MAPPING

The problems of localization and mapping for rotbepend on each other; it means that if the robot
location is known then map building would be ea&lgo if the map is known, there are many efficient
algorithms to determine the robot location. Buvsd both problems simultaneously is very difficfil.

A solution to SLAM must deal with the following gstems [1,4,5]:

Sensor uncertainty: One of the most important gnoisl in SLAM is measurement error of robot
odometry which results in robot localization uneerty. In modeling problems, if different measureine
errors are statistically independent, it would lsyeto resolve them. However in map building fdnap
these errors are statistically dependent. Thisizabse control error accumulates over time whiadddan
more error in interpretation of data for subsequastisurements. Fig.1 illustrates this problem. Résp
these errors is important to build a correct map.
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Fig.1 A map generated using laser and odometry méhsurement errors [27]

Fig.2 The actual map in Fig.1 [27]

Correspondence problem: Another main problem in gexeration is the correspondence problem.
Detecting correspondence means to recognize tligratit sensory measurements belong to a unique
physical object.
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Loop closing: A solution to this problem aims totet# and close loops in map with the use of
correspondence detection. When the robot reacleesrtth of a loop, it must locate itself in the mapas
built so far. This is difficult because the accuatal measurement errors might be enormous. Another
difficulty arises because the number of hypothéticaps and robot locations grow exponentially wiithe.
Fig.2 represents the map in Fig.1 with the afordroead problems solved.

Time complexity: computational efficiency is anpartant issue in the design of algorithms for
autonomous mobile robots because they have lintitedputational resources. An algorithm proposed for
SLAM must guarantee real-time performance on thiesited set of resources.

Memory complexity: memory usage is too an imporfablem in algorithms developed for mobile
robots. A memory consuming process can preventr gilecesses from execution and therefore suspend
robot activities.

2.1 Related Works

Several methods have been proposed to solve thé/SirAblem. Extended Kalman Filter (EKF),
Fast SLAM and Distributed Particle (DP) SLAM aree tmost popular ones. EKF eliminated the linear
motion model requirement in Kalman Filter (KF), apdoduces accurate results. However it fails in
environments where error model is not Gaussianiaisl computationally inefficient [6-10]. Fast SLAM
combines the particle filter [11-13] and KF methadsmprove the efficiency of KF method. Each paeti
stores the robot trajectory and map to increasepleed of algorithm. However, storing map in eaaftige
requires a large amount of memory. Rao—Blackwalligarticle filter method [14,15] proposed a mechani
to share the maps between particles to compensateory requirement of Fast SLAM, but requires
predetermined landmarks in the environment.

DP-Slam uses a complex data structure to repraseittple particles in a single map. In this
method a occupancy map is used which cells are thest represent map parts of different particldss
data structure reduces the memory requirement htitapburden on speed of algorithm due to data
manipulation complexity. This algorithm does naguiee landmarks and its correspondence detectiontis
accurate [16,17].

In [18], particle filter is combined with Genetitgarithms to alleviate the problem of local minima.
This method uses image processing for correspoedeetection which acts very well, however this puts
burden on processing time of the algorithm. Begural.e[5] used a set of fuzzy rules to detect errior
sensory measurements. It is based on Genetic tigwriand uses a fitness function with a complicated
formula for matching. The method used the Islande®ie algorithms (IGA) to increase speed and vriet
The IGA is fast if the number of processors is édaahe number of islands. However, an autonomous
mobile robot usually has a single processor. Ia taise, IGA performance is like simple GA and tfoeee
speed decreases. Moreover, the memory requiremmel®A is more than simple GA.

We reduced the search space to increase the spdiading optimal solution in the evolutionary
algorithm. This reduction also lowers the memouieements of the proposed algorithm.

3. PROPOSED ALGORITHM

The problem of SLAM can be defined as an optimaatn the space of all possible maps and robot
trajectories [19]. However the search space of n@ajus paths are extremely large because they ale hig
dimensional data structures. Search in this lapgees for optimum solutions is very time consumisgl9].

In order to decrease the number of dimensions d@nchespace, we quantized the error measuremeints int
L<<M partitions where M is the total number of serys measurements along the robot trajectory.
Optimization is performed on each robot step andhenset of all partitions which both have much léena
number of dimensions. Optimization on each robep sthcreases the convergence speed of the optiarizat
on all partitions.

The algorithm we propose here is based on two kBeamethods (Fig.3). One is a local search
algorithm that uses particle swarm optimizatione goal of local search is to extend and improventiag
and robot path efficiently and in real-time, usingrrent map and sensory information. Global search
algorithm is used to solve correspondence and ébaging problems. The algorithm detects correspocele
or loop and then performs a global search.

Reduced Search Space Algorithm for Simultaneoualization and Mapping ... (H. Omranpour)
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Fig.3 Flow chart of the proposed algorithm

The evaluation functions we used here are basedoambination of localization and mapping
information. Map representation model is importhatause it influences the time and memory complexit
of algorithm. We used occupancy grid to represkatrhap because of its simplicity in structure asd,u
moreover it is fast in processing homogeneous imé&bion. Another reason to use occupancy grid isdba
proposed algorithm does not require landmarks.

3.1 Local search algorithm

Local optimization is performed to increase theusacy of odometry measurements in each robot
step. Locally accurate maps and robot poses aregitweiped together by the global search algorithfiind
the globally accurate map and path with high speedrder to perform optimization efficiently andtiwlow
memory requirements, and also to keep the sizeafth space small in each step, we used partidensw
optimization (PSO).

PSO is a stochastic optimization technique basesbbnions of a population of particles. Inspired
by social behaviors of bird flocking and fish scliog, it was first introduced by Kennedy and Ebetha
1995 [20].

This method is based on a set of particles whickarin search space. Each particle consists of a
location (p[]) and a velocity (v[]) vector. It alsetains the best observed solution of itself (fhesnd of its
group (gbest[]). Each particle moves with apprdgrizelocity toward the best found solution of ifseid its
group to find the optimum solution. PSO can findegatable answers to difficult nonlinear and diseret
optimization problems [21].

In the proposed algorithm, we used each partickepoesent accumulated error in robot movement.
AX, Ay and A© represent the amount of error in location (X,Y§l arientation®, respectively for the last
robot step. As the robot moves, these errors dceleted in each step and added to sensory measntgito
localize the robot and generate the map correlttlyhis problem, the search space is the cubenadfAx,
maxAx], [-maxAy, maxAy] and [-max\©, maxAO] in (x, y, ©) space. This is a small search space because
measurement error in each step lies in a tight eafgg.4). Therefore we can find answer quickly by
applying the PSO Algorithm. First we distribute therrticles in a small search cube, and then thepdable
solution is found as the particles move in thiscepa

In order to calculate the evaluation function ialsgéme, we used Eq. 1.

H - _ LR 1 If( maqpart(t)] (i’ J) > 0)
evaluation(t) = ZZ{O f(man, (s ) =0)

i=1 j=1

(1)

‘mapl[part(t)]’ is part of the map that is being aped currently and mt and nt represent its
dimensions. Every time an obstacle is detectetlérdcation (i,j) of the map, the correspondingd ealue is
increased by 1. The evaluation function of (Eg.dlcalates the number of observed obstacles in e m
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Whatever these obstacles overlap and decreasariharuthe obtained map will be more accurate. V& se
to find the maximum of the evaluation function;réfere a negative sign is applied in (Eq.1).

A©

Ay

Fig.4 Search space for local search algorithm iigiced to the cube. This is a small search spacause
measurement errors in each step are small

We have tried a second evaluation function whidowates the mean of the number of observed
obstacle cells (Eq. 2).

nom o
map[ part (t)] (I ' J)
evaluation , (t) = =L
valuatl 2( ) i m (1 |f( map[ part ()] (i, J) > 0) (2)
= 2|0 if(map py (1) =0)

Initially a population of random patrticles is gesteid. Moving the particles of population, we seek
to find the optimum solution.

In each iteration, pbest and gbest are determifiken we use Eq. 3 to calculate the velocity and
Eq. 4 to update the position of each particle

Vi, = WV, +cr.(pbest; - p;,)+c,r,.(gbest - p;,) 3

Pt = Pi¢ T Vi 4)

" and 2 are random numbers in the interval [O,‘f}, and C, are learning rates usually set

Here,
to 2.

Because time order of PSO algorithm is constantiaddes not require evaluation of complicated
mathematical expressions [22], this algorithm ceekslocal search space and find the optimal salutio

real-time with few particles and movements.

3.2 Global Search Algorithm

The goal of the global search is to detect cornedpoces and close loops. If the robot encounters a
place for the second time but the laser sensomecardetect obstacles in their right location theapl or
correspondence is detected and the global seagohthim is called.

The global search is an evolutionary algorithm Whééms to find the minimum error of poses to
build a consistent map. Contrary to the local dgatite global search algorithm uses a sequencebuaft r
poses and laser sensor measurements to updatgeagtation of the map. A problem that arises herhat
the dimensionality of search space is proportidoahe number of robot steps along the path. Ireotd
reduce the dimensionality, we divided these stafisa small number of groups. Error in poses and afa
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each group is represented with a vector in chromesd hese errors are multiplied to a Gaussian imct
and are distributed over group steps to avoid f@pprecision.

Evolutionary algorithms are a class of search dlgms inspired by evolution of animates. The
most important advantage of evolutionary algorithsnthat they are applicable to a wide range objams
with large space of possible solutions. With propse of evolutionary operators, they can pass local
extremums and find the global extremum [23].

Each evolutionary algorithm is composed of eightpahich must be designed carefully to meet
the specific problem requirements. We will considach part for the proposed algorithm.

3.2.1 Representation

The first step in using an evolutionary algorittsrté appropriately code the parameters of problem
in a format suitable for the algorithm. In this &g, we code the important parameters of the embin
persons of population which are called chromosome.

We assume that the data of M successive time arepavailable to this algorithm. As measurement
error is a continuous function, we divide this data L parts. Therefore each chromosome becon¥k*2
matrix. We chose L<<M to speed up the algorithm asutlice the memory requirements. Each column in the
chromosome represents an error part. Errors ofitotin (x,y) coordinate and direction in the iflrt are
represented byxi, Ayi and AGi respectively. These errors are weighted with assean function and added
to the i-th part of the robot locations and thereftm the obstacles locations. Error of i-th partX, y ando
axis are multiplies to a Gaussian functions withansuxi, pyi and u©i. The chromosome with L parts is
represented in Fig.5.

1 2 L
N T N g
1%} ™
(i’l) M1 :ﬁXl :’_\.Xg ...... ﬂXL
Ay | Az A
. Y1 | 8¥z YL
AO|AD, ... AOL
1 2 L
AXl AXE ...... AXL
|21 B2 | e Had
) A}'l A_‘Vg ....... A}'L
Ber | Bg2 [ eeeeew HyL
ABy AB4 . AOL
M ez | -eeees HaL

Fig.5 (a) 3D representation of chromosome, (b) @resentation of chromosome

Each obtained column of error is added to the spoeding part using a Gaussian weighting
function. This is shown for x coordinate and i-driin Eq. 5.

ath*. — 1.)?
errorifj :Axi XLexp(—(p h,] :uxl) ) -

S, 2m 20"
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]

X X

Where €Irot ) represents the obtained error aﬁgth'i is the index in the rang L of j-th
measurement in the i-th part for x axis. Standagediations for x, y and® depend on the model of
environment and robot sensors. We have considbead to be constant for this experiment. To avoasiiog
precision because of dividing measurements to tspare used a similar Gaussian weighting mechanism
with an appropriately selected mean to increasspked and accuracy of the algorithm.

3.2.2 Initialization

There is no information available about the pattefrisolution to this problem. Therefore random
numbers of uniform distribution in a range betwesmimum and maximum values of the measurement
errors and mean are used to initialize the popmriati

3.2.3. Fitness Function

In order to select parents and survivors, we mualuate chromosomes in the population. The goal
of the evolutionary algorithm is to find the maximyminimum) of the fitness function. We combinedtw
different fitness functions in Eq. 6 and Eq. 7 valeate the population.

3 maf,
. _ i=1 j=1
fitnesg =—— 1 if(mapi.j)>0) (6)
i:ljzi 0 if(map(, j)=0)
- |1 i ((map(, j) >0) & (traj(i, ) ==1))
fitness = -W, Z -

1o else
-W,.Distance(obj(t,), obj(t,))

In Eq. 6, sum of observations of obstacles in aaap cell is divided to the number of occupied
cells to calculate the mean of the times an obstecbbserved in a cell. A weighted sum of two ®im
calculated in Eq. 7. The first term with weight -\Wtbunts the number of points in the robot pathcWwhi
have conflict with the observed obstacles in the.nfde second term, measures the distance between t
objects in the map where a correspondence has drtented among them. The W1 and W2 are used to
adjust the effect of each term. Their values depamdhe specific problem in hand. In order to avibid
undesirable effect of relative magnitude of eathefis function on the other, we used Pareto’s rdetbo
maximize both concurrently [24].

3.2.4 Parent selection

Considering chromosome representation, we prefaiesklect parents in random, because it is
possible to combine a good and a poor solutiongemérate a better one. Even combining two pootisols
might result in an offspring with high fithess valurhis increases the population variety and exe@rch
space.

3.2.5 Crossover

To improve the population variety, a uniform crogsmois used. Two parents are selected in random
and combined with probability Pc. The odd and eselnmns are selected from each parent and intetbav
to generate two children. This operation is rembateproduce a predetermined number of offsprirechE
column of the chromosome in Fig.5 contains 3 pafinsumbers. Each pair represents error and meax for
and© dimensions. The proposed crossover operator igriEbsto ensure the variety and convergence speed
of the global search algorithm. In order to achieadety, in the first half of the generations eacimber is
selected with the probability 0.5 from a parent.ifcrease the convergence speed, in the seconafiiié
generations, each pair of numbers comes from anpaigh probability 0.5 (Fig.6). Error and meandach
of X, y and© dimensions are selected together to prevent clsangerror effect on measurement parts. This
inhibits generating incompetent offspring and sgesghvergence to optimum solution.

Reduced Search Space Algorithm for Simultaneoualization and Mapping ... (H. Omranpour)
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1 2 .. 1 L
parents 1 2 . i L
1 2 . i L
offspring 1 2 .. .. 1 L

Fig.6 Uniform crossover used in the second hafeaferations in global search algorithm

3.6.2 Mutation

This is an important operator for generating neywytations in intact portions of the search spatce. |
also can help search algorithm to pass over lodedmums [25].

Mutation takes place for each offspring column watiobability Pm (Fig.7). Each one of the three
pairs in chromosome column is selected with prdighi/3. A random number in the range [-c.max
c.maxax] or [-c.M/L,c.M/L] is added to one of the erroalaes om correspondingly, if it does not violate the
valid range. c is a small constant e.g. 0.1.

2 1 L

Fig.7 Mutation operator in global search algorithm
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For mutation, it is probable for all values in ttleromosome to change. All values of error in the
valid range are explored by changifig, Ay andA©. Changes in the correspondingre admitted to reach a
better error distribution.

Mutation is an important operator. A search aldwnitusing only crossover cannot find the optimum
solution but with mutation alone it is possible.eTheason is that crossover searches a space abiifine
current parents but mutation is able to generapaifations in all points of search space.

3.2.7 Survivor s selection

This method is based on tournament amdl wherep is the population size aridis the offspring
number. Advantage of this selection is its highespand guaranteed convergence to global or locahom.
Pareto’s method is used in survivors selection.hfyigpercent of survivor population is selected from
offspring and the remaining 20% comes from pardntsournament, g chromosomes are selected randomly
and the best of them is chosen to remain in thé gemxeration. To selegtsurvivors, tournament is repeated
for 80% of population sizeuf in the offspring population and for 20% 1ofn the parent population. Another
benefit of this method is to select proper persfsom previous population that results in diversitgd
convergence ability to reach optimum solution [26].

3.2.8 Termination condition

We used disjunctive combination of two conditionsréach the solution quickly and with high
precision, until the number of generations reachasaximum value or variance of the fithess reahes
lower threshold.
If correspondence or loop is not detected afteinle tsteps (Fig.3), the global search algorithmaked
because detection algorithm might work impropdrithis case, W2 in Eq. 7 is set to 0.

3.3 Comparison with other methods
In this section we compare the properties of tteppsed method with current methods (table.1).

Table.1 Comparing proposed method with other ndstho

Proposed

EKF Fast slam DP-slam Method
Yes Yes No No Landmark

. . . Loop closing and
hlidh Al e hlidh correspondence
High Low High Med Time complexity
No No Yes No Local minima
High High Med Low Memory complexity
Yes Yes Yes Yes Convergence
Gaussian Any Any Any Error model

Each row compares one feature of all methods. &Be rfow indicates that error model which
entirely misleads the robot path generation istaatyi in the proposed method. It is clear from €all that
the proposed method is superior in features toratientioned methods. For example the time requived
process map in Fig. 8.b for the proposed algorithia of the time required for DP-SLAM method.

4. EXPERIMENTAL RESULTS

We used two datasets to demonstrate the resulsopbsed method [27]. Primary map and path
trajectory with odometry error is shown in Fig. 8.

By selecting 10 particles and applying the localrsk algorithm for the first loop of Fig.8 maps and
paths shown in Fig.9 are generated after 50 movtsmen

Global search algorithm is called after a corresigmice or loop has been detected. Results of this
algorithm are shown in Fig.10. In global searctoatgm the population size is 10, number of gernenatis
100, size of children is 7*and q in tournament selection is set to 5. Pm Radire set to 0.05 and 0.8
correspondingly. These values are selected to niagithe convergence of experiments to optimal soiut
It is obvious in Fig.10 that the global search alpon has correctly closed the loops.

Reduced Search Space Algorithm for Simultaneoualization and Mapping ... (H. Omranpour)



58 a ISSN: 2089-4856

@)

(b)

(@)

(b)

Fig.9 Results of the local search algorithm for rmapig.8.a (a) using Eq.1 and (b) using Eq. 2waduation
function
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Convergence of global search algorithm to optim@uton is show in Fig.11 for two fitness
functions in Eq. 6 and Eq. 7 from Fig 8.b.

@)

(b)

A

A

Lir I‘A‘il-

Fig.10 Results of the global search algorithm @afifst loop of Fig 8.a and (b) for Fig 8.b

Fitness

0 M 2 30 40 s & 70 80 90 1m0
Generation
Fitness
0
2
4
]
k]
(b) -10

Generminon "
Fig.11 Best fitness function for 100 generationsnf@ap in Fig 8.b (a) using Eq. 6 (b) using Eq. 7 &vid
W2 are setto 0.5
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It can be seen in Fig.11 that the global searchrdlgn approaches the optimal solution in an
acceptable generation numbers.

5. DISCUSSION

In this section we discuss the novel ideas propaséds paper. The goal of evaluation function of
Eq.1 is to increase overlap in the points of obdstam the map for accurate map generation. InlBigolack
lines display the observed obstacles by robot usisgr sensor and the red arrow is the state afolhet in
time step i. Because of odometry error, robot okesethe obstacles in step i+1 like the blue limeBigl12.b.
The goal is to correct the robot state which leadsbstacle map shown in blue lines of Figl2.c.

2
(@)
]
(b) v
¥
(©) +

Fig.12 (a) Observed obstacles and state of rohtiinim step i, (b) Observed obstacles and statelaftrwith
odometry error in time step i (black) and i+1 (BlUg) Correct state and obstacles in (b)

Fig.13 Map and path generated by globél:selarchiﬁigmwith Eq. 6

An evaluation function for this goal should giveedit to states with overlap in observed obstacles.
In Fig.12.b the number of obstacles in occupana@y igrlarge and they overlap with previous obsaovet in
few points, unlike points in Fig.12.c. The locahsgh algorithm with evaluation function of Eq.1dmthe
best state (x,4) for robot in which the number of obstacles in niggmallest and these obstacles highly
overlap. The second evaluation function in Eq. [2ulates the average number of observations fon eatt
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that is detected as obstacle. The resulting mapoi® accurate with maximal overlap and higher \&aloke
average number of occupation for each cell.

Time complexity of local search algorithm with kasoed obstacles, m particles and n iterations
belongs to©(kmn). If we use free cells in evaluation functiomgth c free cells between the robot and
obstacles, the time complexity becon®@§c+1)kmn). However evaluation functions are desdyrio be
independent of free cells to increase speed oévbéution and algorithm so that it can be usednenli

The fitness function in Eq. 6 is similar to Eq.vdth the calculations over the entire map. Because
the global search algorithm is designed to closgdoand correspondences, another fitness functas w
suggested in Eq. 7. If we use only the fitness tioncin Eq.6, it may generate maps similar to F3g.h
order to avoid conflict between path and obstaclesproposed the fitness function in Eq. 7. Thiscfion
uses two terms; the number of conflict between path obstacles and distance between two obsersation
a single object. The global search algorithm usitmgss function of Eq. 7 with only first term geates map
like Fig.14. This is because the map is extende/tdd conflicts.

Fig.14 Map and path generated by global searchitligowith first term of Eq. 7. The map is extended
avoid conflicts

If we use the two terms in Eq. 7 summed with theefis function in Eq. 6 we acquire the map in
Fig.15 which is well but not perfect. In order tetghe best possible solution, we used Pareto’hadet
instead of simple addition to combine two fitnessdtions. The result is shown in Fig.16.

Fig.15 Map and path generated by global searchitigowith fitness using sum of Eq. 6 and Eq.7

In the global search algorithm, if each person iregud units of memory for each of its cells, ldngt
of chromosome is |, population size jis number of children i& and memory to store a map is M then
memory requirement belongs @(6dl(u+A)+M). This is independent of the number of generati The
algorithm was designed to avoid keeping multiplgpsnand uses one map in memory during its execution.
Therefore the algorithm is memory efficient.

Reduced Search Space Algorithm for Simultaneoualization and Mapping ... (H. Omranpour)
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Fig.16 Map and path generated in global searctrithgo with Pareto’s method

6. CONCLUSION

Simultaneous localization and mapping is an impuartaoblem in robotics. In this paper, with an
optimization approach, we used evolutionary algonitand particle swarm optimization to solve the 8LA
problem. With suitable representation of problemap@eters in particles and a novel evaluation famgtthe
local search algorithm could solve the problem éind the solution with high accuracy and speed. To
overcome the loop closing and correspondence prahleve used a memory efficient algorithm with a
heuristic fitness for global search in which Paeetoethod was used to combine two fitness functidvish
a novel representation of parameters in chromosamegduced the dimension of search space.

The proposed method has desirable features, likeead for landmarks in the environment. Results
of experiments on real datasets revealed that thigoped algorithm can be implemented and used an re
robots efficiently. We used only raw laser datachhis inefficient for detecting correspondence &vaps.
Future works should address the problems of loap @rrespondence detection and developing fitness
functions.
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