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In this paper, we propose a new algorithm for simultaneous localization and 
mapping in mobile robots which uses evolutionary algorithm and particle 
swarm optimization. The proposed method is based on both local and global 
heuristic search methods. In each step of robot movements, the local search 
is applied in the small search space of odometry errors to improve the map 
accuracy. A global search method is applied for loop closing. The proposed 
algorithm detects loops and closes them, detects and solves correspondence 
and avoids local extremums. With a proper representation of problem 
parameters in chromosome, the dimensionality of search space is reduced. 
The proposed algorithm utilizes occupancy grid and does not require land 
marks which are not available in most natural environments. A new fitness 
function is proposed that is computationally efficient and eliminates the need 
for complex statistical calculations as used in current approaches. Results of 
experiments on real datasets exhibit the superior performance of the 
proposed method compared to the current methods. 
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1. INTRODUCTION 

Rapid progresses in autonomous mobile robots enable them to autonomously explore unknown 
environments of other planets or ocean floors. Because there is no prior knowledge about these environments 
available to the robots, they must be able to build the environment map online and to localize themselves on 
the map concurrently. 

Map building is to acquire a model of the surrounding of the robot and localization is to identify the 
location and state of the robot in the obtained model. Maps are used for robot localization and navigation. To 
build a map, robot must be equipped with sensors like camera, sonar, laser, infrared, radar, touch sensor, 
compass and Global Positioning System. Because most of these sensors have limited range and measurement 
error, the robot must explore the environment to build a complete map. In 80s and early 90s, map building 
methods were classified into topologic and metric categories. An example of metric methods is occupancy 
grid which represents the map with a network of empty or occupied cells. Topologic methods display the 
environment with the use of a list of special locations which are connected together with a set of edges. These 
edges contain information about how the robot navigates among different places [1]. 

In order to navigate autonomously and intelligently, a mobile robot must have the environment map 
and its location on it. In recent years, simultaneous localization and mapping (SLAM) methods are developed 
to provide a solution for the need of concurrent localization of robot and other important objects in the 
environment [2]. 

In SLAM, mobile robot receives information about the environment from its sensors, processes 
them, builds a correct map and localizes itself to autonomously explore the environment [3]. 
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Several methods have been proposed to solve this problem which will be discussed in following 
section. In this paper, we propose a new intelligent method for simultaneous localization and mapping which 
minimizes error in map and path. Because of their desired features in this problem, we have used 
evolutionary algorithm and particle swarm optimization. 

In section 2, we explain simultaneous localization and mapping and review current solutions to this 
problem. In section 3 we describe the proposed algorithm and compare its features to other methods. Section 
4 is dedicated to exhibit the results of experiments. In section 5 we discuss the ideas in the proposed method 
and section 6 is the concluding remarks. 
 
2. SIMULTANEOUS LOCALIZATION AND MAPPING 

The problems of localization and mapping for robot depend on each other; it means that if the robot 
location is known then map building would be easy. Also if the map is known, there are many efficient 
algorithms to determine the robot location. But solving both problems simultaneously is very difficult [1]. 

A solution to SLAM must deal with the following problems [1,4,5]: 
Sensor uncertainty: One of the most important problems in SLAM is measurement error of robot 

odometry which results in robot localization uncertainty. In modeling problems, if different measurement 
errors are statistically independent, it would be easy to resolve them. However in map building for robot, 
these errors are statistically dependent. This is because control error accumulates over time which leads in 
more error in interpretation of data for subsequent measurements. Fig.1 illustrates this problem. Resolving 
these errors is important to build a correct map. 
 
 

 
 

Fig.1 A map generated using laser and odometry with measurement errors [27] 
 
 

 
 

Fig.2 The actual map in Fig.1 [27] 
 
 
Correspondence problem: Another main problem in map generation is the correspondence problem. 

Detecting correspondence means to recognize that different sensory measurements belong to a unique 
physical object. 
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Loop closing: A solution to this problem aims to detect and close loops in map with the use of 
correspondence detection. When the robot reaches the end of a loop, it must locate itself in the map it has 
built so far. This is difficult because the accumulated measurement errors might be enormous. Another 
difficulty arises because the number of hypothetical maps and robot locations grow exponentially with time. 
Fig.2 represents the map in Fig.1 with the aforementioned problems solved.  

Time complexity:  computational efficiency is an important issue in the design of algorithms for 
autonomous mobile robots because they have limited computational resources. An algorithm proposed for 
SLAM must guarantee real-time performance on these limited set of resources. 

Memory complexity: memory usage is too an important problem in algorithms developed for mobile 
robots. A memory consuming process can prevent other processes from execution and therefore suspend 
robot activities. 
 
2.1 Related Works 

Several methods have been proposed to solve the SLAM problem. Extended Kalman Filter (EKF), 
Fast SLAM and Distributed Particle (DP) SLAM are the most popular ones. EKF eliminated the linear 
motion model requirement in Kalman Filter (KF), and produces accurate results. However it fails in 
environments where error model is not Gaussian and it is computationally inefficient [6-10]. Fast SLAM 
combines the particle filter [11-13] and KF methods to improve the efficiency of KF method. Each particle 
stores the robot trajectory and map to increase the speed of algorithm. However, storing map in each particle 
requires a large amount of memory. Rao–Blackwellized particle filter method [14,15] proposed a mechanism 
to share the maps between particles to compensate memory requirement of Fast SLAM, but requires 
predetermined landmarks in the environment. 

DP-Slam uses a complex data structure to represent multiple particles in a single map. In this 
method a occupancy map is used which cells are trees that represent map parts of different particles. This 
data structure reduces the memory requirement but put a burden on speed of algorithm due to data 
manipulation complexity. This algorithm does not require landmarks and its correspondence detection is not 
accurate [16,17]. 

In [18], particle filter is combined with Genetic algorithms to alleviate the problem of local minima. 
This method uses image processing for correspondence detection which acts very well, however this puts a 
burden on processing time of the algorithm. Begum et.al. [5] used a set of fuzzy rules to detect errors in 
sensory measurements. It is based on Genetic algorithms and uses a fitness function with a complicated 
formula for matching. The method used the Island Genetic algorithms (IGA) to increase speed and variety. 
The IGA is fast if the number of processors is equal to the number of islands. However, an autonomous 
mobile robot usually has a single processor. In this case, IGA performance is like simple GA and therefore 
speed decreases. Moreover, the memory requirement for IGA is more than simple GA. 

We reduced the search space to increase the speed of finding optimal solution in the evolutionary 
algorithm. This reduction also lowers the memory requirements of the proposed algorithm. 

 
 

3. PROPOSED ALGORITHM 
The problem of SLAM can be defined as an optimization in the space of all possible maps and robot 

trajectories [19]. However the search space of maps and paths are extremely large because they are high 
dimensional data structures. Search in this large space for optimum solutions is very time consuming [5, 19]. 
In order to decrease the number of dimensions in search space, we quantized the error measurements into 
L<<M partitions where M is the total number of sensory measurements along the robot trajectory. 
Optimization is performed on each robot step and on the set of all partitions which both have much smaller 
number of dimensions. Optimization on each robot step increases the convergence speed of the optimization 
on all partitions. 

The algorithm we propose here is based on two search methods (Fig.3). One is a local search 
algorithm that uses particle swarm optimization. The goal of local search is to extend and improve the map 
and robot path efficiently and in real-time, using current map and sensory information. Global search 
algorithm is used to solve correspondence and loop closing problems. The algorithm detects correspondence 
or loop and then performs a global search. 
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Fig.3 Flow chart of the proposed algorithm 
 
 

The evaluation functions we used here are based on combination of localization and mapping 
information. Map representation model is important because it influences the time and memory complexity 
of algorithm. We used occupancy grid to represent the map because of its simplicity in structure and use, 
moreover it is fast in processing homogeneous information. Another reason to use occupancy grid is that our 
proposed algorithm does not require landmarks. 

 
3.1 Local search algorithm 

Local optimization is performed to increase the accuracy of odometry measurements in each robot 
step. Locally accurate maps and robot poses are then grouped together by the global search algorithm to find 
the globally accurate map and path with high speed. In order to perform optimization efficiently and with low 
memory requirements, and also to keep the size of search space small in each step, we used particle swarm 
optimization (PSO). 

PSO is a stochastic optimization technique based on solutions of a population of particles. Inspired 
by social behaviors of bird flocking and fish schooling, it was first introduced by Kennedy and Eberhart in 
1995 [20]. 

This method is based on a set of particles which move in search space. Each particle consists of a 
location (p[]) and a velocity (v[]) vector. It also retains the best observed solution of itself (pbest[]) and of its 
group (gbest[]). Each particle moves with appropriate velocity toward the best found solution of itself and its 
group to find the optimum solution. PSO can find acceptable answers to difficult nonlinear and discrete 
optimization problems [21]. 

In the proposed algorithm, we used each particle to represent accumulated error in robot movement. 
∆x, ∆y and ∆Ө represent the amount of error in location (X,Y) and orientation Ө, respectively for the last 
robot step. As the robot moves, these errors are calculated in each step and added to sensory measurements to 
localize the robot and generate the map correctly. In this problem, the search space is the cube of [-max∆x, 
max∆x], [-max∆y, max∆y] and [-max∆Ө, max∆Ө] in (x, y, Ө) space. This is a small search space because 
measurement error in each step lies in a tight range (Fig.4). Therefore we can find answer quickly by 
applying the PSO Algorithm. First we distribute the particles in a small search cube, and then the acceptable 
solution is found as the particles move in this space. 

In order to calculate the evaluation function in real-time, we used Eq. 1. 
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‘map[part(t)]’ is part of the map that is being updated currently and mt and nt represent its 

dimensions. Every time an obstacle is detected in the location (i,j) of the map, the corresponding cell value is 
increased by 1. The evaluation function of (Eq.1) calculates the number of observed obstacles in the map. 
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Whatever these obstacles overlap and decrease in number, the obtained map will be more accurate. We seek 
to find the maximum of the evaluation function; therefore a negative sign is applied in (Eq.1). 
 
 

 
 

Fig.4 Search space for local search algorithm is confined to the cube. This is a small search space because 
measurement errors in each step are small 

 
 

We have tried a second evaluation function which calculates the mean of the number of observed 
obstacle cells (Eq. 2). 
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Initially a population of random particles is generated. Moving the particles of population, we seek 

to find the optimum solution.  
In each iteration, pbest and gbest are determined. Then we use Eq. 3 to calculate the velocity and 

Eq. 4 to update the position of each particle. 
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Here, 1r  and 2r  are random numbers in the interval [0,1], 1c  and 2c  are learning rates usually set 
to 2.  

Because time order of PSO algorithm is constant and it does not require evaluation of complicated 
mathematical expressions [22], this algorithm can seek local search space and find the optimal solution in 
real-time with few particles and movements. 
 
3.2 Global Search Algorithm 

The goal of the global search is to detect correspondences and close loops. If the robot encounters a 
place for the second time but the laser sensor can not detect obstacles in their right location then loop or 
correspondence is detected and the global search algorithm is called. 

The global search is an evolutionary algorithm which aims to find the minimum error of poses to 
build a consistent map. Contrary to the local search, the global search algorithm uses a sequence of robot 
poses and laser sensor measurements to update a large portion of the map. A problem that arises here is that 
the dimensionality of search space is proportional to the number of robot steps along the path. In order to 
reduce the dimensionality, we divided these steps into a small number of groups. Error in poses and map of 
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each group is represented with a vector in chromosome. These errors are multiplied to a Gaussian function 
and are distributed over group steps to avoid loosing precision. 

Evolutionary algorithms are a class of search algorithms inspired by evolution of animates. The 
most important advantage of evolutionary algorithms is that they are applicable to a wide range of problems 
with large space of possible solutions. With proper use of evolutionary operators, they can pass local 
extremums and find the global extremum [23]. 

Each evolutionary algorithm is composed of eight parts which must be designed carefully to meet 
the specific problem requirements. We will consider each part for the proposed algorithm. 

 
3.2.1 Representation 

The first step in using an evolutionary algorithm is to appropriately code the parameters of problem 
in a format suitable for the algorithm. In this section, we code the important parameters of the problem in 
persons of population which are called chromosome. 

We assume that the data of M successive time steps are available to this algorithm. As measurement 
error is a continuous function, we divide this data into L parts. Therefore each chromosome becomes a 3*L*2 
matrix. We chose L<<M to speed up the algorithm and reduce the memory requirements. Each column in the 
chromosome represents an error part. Errors of location in (x,y) coordinate and direction in the i-th part are 
represented by ∆xi, ∆yi and ∆Өi respectively. These errors are weighted with a Gaussian function and added 
to the i-th part of the robot locations and therefore to the obstacles locations. Error of i-th part for x, y and Ө 
axis are multiplies to a Gaussian functions with means µxi, µyi and µӨi. The chromosome with L parts is 
represented in Fig.5. 

 

 
 

Fig.5 (a) 3D representation of chromosome, (b) 2D representation of chromosome 
 
 

Each obtained column of error is added to the corresponding part using a Gaussian weighting 
function. This is shown for x coordinate and i-th part in Eq. 5. 
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Where 
x
jierror ,  represents the obtained error and 

x
jipath,  is the index in the range 








L

M
,1

 of j-th 
measurement in the i-th part for x axis. Standard deviations for x, y and Ө depend on the model of 
environment and robot sensors. We have considered them to be constant for this experiment. To avoid loosing 
precision because of dividing measurements to L parts, we used a similar Gaussian weighting mechanism 
with an appropriately selected mean to increase the speed and accuracy of the algorithm. 

 
3.2.2 Initialization 

There is no information available about the pattern of solution to this problem. Therefore random 
numbers of uniform distribution in a range between minimum and maximum values of the measurement 
errors and mean are used to initialize the population. 

 
3.2.3. Fitness Function 

In order to select parents and survivors, we must evaluate chromosomes in the population. The goal 
of the evolutionary algorithm is to find the maximum (minimum) of the fitness function. We combined two 
different fitness functions in Eq. 6 and Eq. 7 to evaluate the population. 
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In Eq. 6, sum of observations of obstacles in each map cell is divided to the number of occupied 

cells to calculate the mean of the times an obstacle is observed in a cell. A weighted sum of two terms is 
calculated in Eq. 7. The first term with weight –W1, counts the number of points in the robot path which 
have conflict with the observed obstacles in the map. The second term, measures the distance between two 
objects in the map where a correspondence has been detected among them. The W1 and W2 are used to 
adjust the effect of each term. Their values depend on the specific problem in hand. In order to avoid the 
undesirable effect of relative magnitude of each fitness function on the other, we used Pareto’s method to 
maximize both concurrently [24]. 
 
3.2.4 Parent selection 

Considering chromosome representation, we preferred to select parents in random, because it is 
possible to combine a good and a poor solution and generate a better one. Even combining two poor solutions 
might result in an offspring with high fitness value. This increases the population variety and extends search 
space. 
 
3.2.5 Crossover 

 To improve the population variety, a uniform crossover is used. Two parents are selected in random 
and combined with probability Pc. The odd and even columns are selected from each parent and interleaved 
to generate two children. This operation is repeated to produce a predetermined number of offspring. Each 
column of the chromosome in Fig.5 contains 3 pairs of numbers. Each pair represents error and mean for x, y 
and Ө dimensions. The proposed crossover operator is designed to ensure the variety and convergence speed 
of the global search algorithm. In order to achieve variety, in the first half of the generations each number is 
selected with the probability 0.5 from a parent. To increase the convergence speed, in the second half of the 
generations, each pair of numbers comes from a parent with probability 0.5 (Fig.6). Error and mean in each 
of x, y and Ө dimensions are selected together to prevent changes in error effect on measurement parts. This 
inhibits generating incompetent offspring and speeds convergence to optimum solution. 
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Fig.6 Uniform crossover used in the second half of generations in global search algorithm 
 
 
3.6.2 Mutation 

This is an important operator for generating new populations in intact portions of the search space. It 
also can help search algorithm to pass over local extremums [25]. 

Mutation takes place for each offspring column with probability Pm (Fig.7). Each one of the three 
pairs in chromosome column is selected with probability 1/3. A random number in the range [-c.max∆x, 
c.max∆x] or [-c.M/L,c.M/L] is added to one of the error values or µ correspondingly, if it does not violate the 
valid range. c is a small constant e.g. 0.1. 

 

 
 

Fig.7 Mutation operator in global search algorithm 
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For mutation, it is probable for all values in the chromosome to change. All values of error in the 

valid range are explored by changing ∆x, ∆y and ∆Ө. Changes in the corresponding µ are admitted to reach a 
better error distribution. 

Mutation is an important operator. A search algorithm using only crossover cannot find the optimum 
solution but with mutation alone it is possible. The reason is that crossover searches a space confined to 
current parents but mutation is able to generate populations in all points of search space. 

 
3.2.7 Survivors selection 

This method is based on tournament and µ+λ where µ is the population size and λ is the offspring 
number. Advantage of this selection is its high speed and guaranteed convergence to global or local optimum. 
Pareto’s method is used in survivors selection. Eighty percent of survivor population is selected from 
offspring and the remaining 20% comes from parents. In tournament, q chromosomes are selected randomly 
and the best of them is chosen to remain in the next generation. To select µ survivors, tournament is repeated 
for 80% of population size (µ) in the offspring population and for 20% of µ in the parent population. Another 
benefit of this method is to select proper persons from previous population that results in diversity and 
convergence ability to reach optimum solution [26]. 
 
3.2.8 Termination condition 

We used disjunctive combination of two conditions to reach the solution quickly and with high 
precision, until the number of generations reaches a maximum value or variance of the fitness reaches a 
lower threshold. 
If correspondence or loop is not detected after k time steps (Fig.3), the global search algorithm is called 
because detection algorithm might work improperly. In this case, W2 in Eq. 7 is set to 0. 
 
3.3 Comparison with other methods 

In this section we compare the properties of the proposed method with current methods (table.1). 
 
 

Table.1  Comparing proposed method with other methods 

EKF Fast slam DP-slam 
Proposed 
Method 

 

Yes Yes No No Landmark 

High High Med High 
Loop closing and 
correspondence 

High Low High Med Time complexity 
No No Yes No Local minima 
High High Med Low Memory complexity 
Yes Yes Yes Yes Convergence 
Gaussian Any Any Any Error  model 

 
 

Each row compares one feature of all methods. The last row indicates that error model which 
entirely misleads the robot path generation is arbitrary in the proposed method. It is clear from Table. 1 that 
the proposed method is superior in features to other mentioned methods. For example the time required to 
process map in Fig. 8.b for the proposed algorithm is ½ of the time required for DP-SLAM method. 

 
 

4. EXPERIMENTAL RESULTS 
We used two datasets to demonstrate the results of proposed method [27]. Primary map and path 

trajectory with odometry error is shown in Fig. 8. 
By selecting 10 particles and applying the local search algorithm for the first loop of Fig.8 maps and 

paths shown in Fig.9 are generated after 50 movements. 
Global search algorithm is called after a correspondence or loop has been detected. Results of this 

algorithm are shown in Fig.10. In global search algorithm the population size is 10, number of generations is 
100, size of children is 7*µ and q in tournament selection is set to 5. Pm and Pc are set to 0.05 and 0.8 
correspondingly. These values are selected to maximize the convergence of experiments to optimal solution. 
It is obvious in Fig.10 that the global search algorithm has correctly closed the loops. 
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(a) 

 

(b) 

 
 

Fig.8 Maps and trajectory used in experiments 
 
 

(a) 

 

(b) 

 
 
Fig.9 Results of the local search algorithm for map in Fig.8.a (a) using Eq.1 and (b) using Eq. 2 as evaluation 

function 
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Convergence of global search algorithm to optimal solution is show in Fig.11 for two fitness 
functions in Eq. 6 and Eq. 7 from Fig 8.b. 
 
 

(a) 

 

(b) 

 
 

Fig.10 Results of the global search algorithm (a) for first loop of Fig 8.a and (b) for Fig 8.b 
 
 

(a) 

 

(b) 

 
 

Fig.11 Best fitness function for 100 generations for map in Fig 8.b (a) using Eq. 6 (b) using Eq. 7. W1 and 
W2 are set to 0.5 
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It can be seen in Fig.11 that the global search algorithm approaches the optimal solution in an 
acceptable generation numbers. 
 
 
5. DISCUSSION 

In this section we discuss the novel ideas proposed in this paper. The goal of evaluation function of 
Eq.1 is to increase overlap in the points of obstacles in the map for accurate map generation. In Fig.12, black 
lines display the observed obstacles by robot using laser sensor and the red arrow is the state of the robot in 
time step i. Because of odometry error, robot observes the obstacles in step i+1 like the blue lines in Fig12.b. 
The goal is to correct the robot state which leads in obstacle map shown in blue lines of Fig12.c.  
 
 

 

(a) 

 

(b) 

 

(c) 

 
 
Fig.12 (a) Observed obstacles and state of robot in time step i, (b) Observed obstacles and state of robot with 

odometry error in time step i (black) and i+1 (blue), (c) Correct state and obstacles in (b) 
 
 

 
Fig.13 Map and path generated by global search algorithm with Eq. 6 

 
 

An evaluation function for this goal should give credit to states with overlap in observed obstacles. 
In Fig.12.b the number of obstacles in occupancy grid is large and they overlap with previous observations in 
few points, unlike points in Fig.12.c. The local search algorithm with evaluation function of Eq.1 finds the 
best state (x,y,Ө) for robot in which the number of obstacles in map is smallest and these obstacles highly 
overlap. The second evaluation function in Eq. 2 calculates the average number of observations for each cell 
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that is detected as obstacle. The resulting map is more accurate with maximal overlap and higher values of 
average number of occupation for each cell. 

Time complexity of local search algorithm with k scanned obstacles, m particles and n iterations 
belongs to Ө(kmn). If we use free cells in evaluation functions, with c free cells between the robot and 
obstacles, the time complexity becomes Ө((c+1)kmn). However evaluation functions are designed to be 
independent of free cells to increase speed of the evolution and algorithm so that it can be used online. 

The fitness function in Eq. 6 is similar to Eq. 2, with the calculations over the entire map. Because 
the global search algorithm is designed to close loops and correspondences, another fitness function was 
suggested in Eq. 7. If we use only the fitness function in Eq.6, it may generate maps similar to Fig.13. In 
order to avoid conflict between path and obstacles, we proposed the fitness function in Eq. 7. This function 
uses two terms; the number of conflict between path and obstacles and distance between two observations of 
a single object. The global search algorithm using fitness function of Eq. 7 with only first term generates map 
like Fig.14. This is because the map is extended to avoid conflicts. 

 
 

 
 

Fig.14 Map and path generated by global search algorithm with first term of Eq. 7. The map is extended to 
avoid conflicts 

 
 

If we use the two terms in Eq. 7 summed with the fitness function in Eq. 6 we acquire the map in 
Fig.15 which is well but not perfect. In order to get the best possible solution, we used Pareto’s method 
instead of simple addition to combine two fitness functions. The result is shown in Fig.16. 
 
 

 
 

Fig.15 Map and path generated by global search algorithm with fitness using sum of Eq. 6 and Eq.7 
 

In the global search algorithm, if each person requires d units of memory for each of its cells, length 
of chromosome is l, population size is µ, number of children is λ and memory to store a map is M then 
memory requirement belongs to Ө(6dl(µ+λ)+M). This is independent of the number of generations. The 
algorithm was designed to avoid keeping multiple maps and uses one map in memory during its execution. 
Therefore the algorithm is memory efficient. 
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Fig.16 Map and path generated in global search algorithm with Pareto’s method 

 
 
6. CONCLUSION 

Simultaneous localization and mapping is an important problem in robotics. In this paper, with an 
optimization approach, we used evolutionary algorithm and particle swarm optimization to solve the SLAM 
problem. With suitable representation of problem parameters in particles and a novel evaluation function, the 
local search algorithm could solve the problem and find the solution with high accuracy and speed. To 
overcome the loop closing and correspondence problems, we used a memory efficient algorithm with a 
heuristic fitness for global search in which Pareto’s method was used to combine two fitness functions. With 
a novel representation of parameters in chromosome, we reduced the dimension of search space. 

The proposed method has desirable features, like no need for landmarks in the environment. Results 
of experiments on real datasets revealed that the proposed algorithm can be implemented and used on real 
robots efficiently. We used only raw laser data which is inefficient for detecting correspondence and loops. 
Future works should address the problems of loop and correspondence detection and developing fitness 
functions. 
 
 
References 
[1] Thrun, S.:Robotic mapping: a survey, Technical Report CMU-CS-02-111, CMU, PA, (2002) 
[2] Nieto, J., Bailey, T., Nebot, E.: Recursive scan-matching SLAM. Robotics Autonomous Systems, 66(1), 39–49 

(2007) 
[3] Martinelli, A., Nguyen, V., Tomatis, N., Siegwart, R.: A relative map approach to SLAM based on shift and 

rotation invariants. Robotics Autonomous Syst. 55(1), 50–61 (2007) 
[4] Frese, U.: A discussion of simultaneous localization and mapping. Autonomous Robots, 20, 25–42 (2006) 
[5] Begum, M.,. Mann, G., Gosine, R.G.: Integrated fuzzy logic and genetic algorithmic approach for simultaneous 

localization and mapping of mobile robots. Applied Soft Computing Journal, 8(1), 150-165 (2008) 
[6] Smith, R., Self, M.P., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. Auton. Robot Vehicles, 

167–193 (1990) 
[7] Dissanayake, M.W.M.G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous 

localization and map building (SLAM) problem. IEEE Trans. Robot. Automat. 17(3), 229–241 (2001) 
[8] Newman, P.: On the structure and solution of the simultaneous localization and map building problem. Ph.D. 

Thesis, University of Sydney, (2000) 
[9] Durrant-Whyte, H.: An autonomous guided vehicle for cargo handling applications. Int. J. Robot. Res, 15(5), 407–

440 (1996) 
[10] Leonard, J.J., Durrant-Whye, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robotics 

Automation, 7(3), 376-382 (1991) 
[11] Montemerlo, M.: Fast SLAM: A factored solution to the simultaneous localization and mapping problem with 

unknown data association. Ph.D. Thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. (2003) 
[12] Roller, D., Montemerlo, M., Thrun, S., Wegbreit, B.: Fastslam 2.0: an improved particle filtering algorithm for 

simultaneous localization and mapping that provably converges. Proceedings of the International Joint Conference 
on Artificial Intelligence. (2003) 

[13] Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Application. 
Artech House. (2004) 

[14] Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based slam with Rao-Blackwellized particle filters by 
adaptive proposals and selective resampling. In Proceedings of the IEEE International Conference on Robotics and 
Automation, ICRA, Barcelona, Spain, pp. 2443–2448 (2005) 



IJRA ISSN: 2089-4872 � 
 

Reduced Search Space Algorithm for Simultaneous Localization and Mapping … (H. Omranpour) 

63

[15] Grisetti, G., Tipaldi, G.D., Stachniss, C., Burgard, W., Nardi, D.: Fast and accurate SLAM with Rao-Blackwellized 
particle filters. Robotics Autonomous Syst., 55(1), 30-38 (2007) 

[16] Eliazar, A., Parr, R.: DP-SLAM: fast, robust simultaneous localization and mapping without predetermined 
landmarks. Proceedings of the 8th Int’l Joint Conference on Artificial Intelligence, pp. 1135-1142 (2003) 

[17] Eliazar, A., Parr, R.: DP-SLAM 2.0, Proc. IEEE Int. Conf. Robotics Automation. 2, 1314-1320 (2004) 
[18] Kwok, N.M., Rad, A.B.: A modified particle filter for simultaneous localization and mapping. J. Intell. Robot 

Syst., 46(4), 365-382 (2006) 
[19] Ducket, T.: A genetic algorithm for simultaneous localization and mapping. Proceedings of the IEEE International 

Conference on Robotics and Automation, 1, 434–438 (2003) 
[20] Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. Proceedings 6th International Symposium 

Micromachine Human Science, Nagoya, Japan, 39–43 (1995) 
[21] Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco, (2001) 
[22] Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. IEEE Evolutionary Computation, 1, 101-106 

(2001) 
[23] Koza, J. R.: Genetic Programming: On the Programming of Computers by Means of Nature Selection. MIT Press, 

Cambridge, MA, (1992) 
[24] Agrawal, S., Dashora, Y., Tiwari, M.K., Son, Y.J.: Interactive particle swarm: A pareto-adaptive metaheuristic to 

multiobjective optimization. IEEE Trans. Syst. Man Cybernetics, Part A, 38(2), 258–277 (2008) 
[25] Rudolph, G.: Self-adaptive mutations may lead to premature convergence. IEEE Trans. Evolutionary Computation, 

5(4), 410–414 (2001) 
[26] Back, T.: Generalized convergence models for tournament and (µ, λ)- selection. In Proceedings of the 6th 

International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc. 2–8 (1995) 
[27] http://www.informatik.uni-freiburg.de/~stachnis/datasets.html 
 


