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 This paper presents a detailed dynamic modeling of realistic four-legged 
robot. The direct and inverse kinematic analysis for each leg has been 
considered in order to develop an overall kinematic model of the robot, when 
it follows a straight path. This study also aims to estimate optimal feet force 
distributions of the said robot, which is necessary for its real-time control. 
Three different approaches namely, minimization of norm of feet forces 
(approach 1), minimization of norm of joint torques (approach 2) and 
minimization of norm of joint power (approach 3) have been developed. 
Simulation result shows that approach 3 is more energy efficient foot force 
formulation than other two approaches. Lagrange-Euler formulation has been 
utilized to determine the joint torques. The developed dynamic models have 
been examined through computer simulation of continuous gait of the four-
legged robot.  
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1. INTRODUCTION  

Recently, many studies have been carried out on multi-legged walking robots because walking 
robots offer better mobility. Multi-legged robot has the advantage over the wheeled robot as it used the 
isolated point to support the trunk not the continuous path that is needed by wheeled robot. It can get steady 
walking on uneven terrain and avoid the obstacle and can get omni-directional motion by keeping the terrain 
intact. It can climb stair and rugged mountain, navigate over planet surface. All of the advantages make the 
multi-legged robot become an important and active area of research in the field of mobile robotics. Because 
the four-legged robot has more carrying capacity and good stability than the biped robot, and has the more 
simple structure than the six-legged robot and eight-legged robot. So, the quadruped robot arouses extensive 
attention. Design of the legged-robot is a complicated problem in applied mechanics and robotics. It needs 
the solving of many interrelated problems like kinematics, gait planning, trajectory generation, dynamics, 
control etc. In order to develop efficient control algorithm of robots, it is important to have good models 
describing the kinematic and dynamic behaviors of the complex multi-legged robotic mechanism. In this 
context, Koo and Yoon [1] obtained a mathematical model for four-legged walking robot to investigate the 
dynamics after considering all the inertial effects in the system. Pfeiffer et al. [2] investigated the dynamics 
of a stick insect walking on flat terrain. Freeman and Orin [3] developed an efficient dynamic simulation of a 
quadruped robot using a decoupled tree-structure approach. A dynamic model of four-legged walking robot 
was derived by Lin and Song [4] to study the dynamic stability and energy efficiency during walking. 

To control the motion of the robot, the trunk body motion controller calculates the resultant control 
wrench (i.e., force and moment), that should be applied to the robot’s body by its supporting legs. Therefore, 
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one of the important issues of a legged robot’s active force control is a successful distribution of its body 
force to the feet. For a statically stable multi-legged robot, at least three legs should be on the ground at any 
instant. If a three-dimensional reaction force vector is considered on each ground leg, the foot force 
distribution problem becomes indeterminate during the walking because of the closed chain system. Multiple 
solutions might exist, which can satisfy the force-moment balance criteria. In this connection, work of 
Howard et al. [5], Gorinevsky and Shneider [6], Jiang et al. [7], Barreto et al. [8] and Gonzalez de Santos et 
al. [9] are worth mentioning.  

Zhou et al. [10] proposed a new force distribution method called Friction Constraint Method 
(FriCoM) to evaluate reaction forces at each ground leg by considering the friction constraints during the 
walking of a four-legged robot.  Results of the FriCoM were compared with those obtained by the pseudo-
inverse method [7] and an incremental method [11]. The FriCoM was found to be more practical compared to 
the pseudo-inverse method. Moreover, it was seen to be computationally faster than the incremental method 
and thus, found to be suitable for real-time control of quadruped robots. Unfortunately, it did not consider 
any locomotion performance objectives, such as minimization of foot force components, minimization of 
joint torques or minimization of energy consumption etc. The minimization of energy consumption plays an 
important role in the locomotion of a multi-legged robot used for service applications.  Marhefka and Orin 
[12] utilized quadratic programming to solve feet forces distributions in hexapod walking robots that 
minimizes the power consumption in DC motors. Kar et al. [13] used sequential quadratic programming 
method to determine energy optimal foot force and performed an analysis of energy efficiency with respect to 
structural parameters, interaction forces, friction coefficient and duty factor of wave gaits, based on a 
simplified model of six-legged robot. Kar et al. [13], and Lin and Song [14] considered instantaneous power 
to be the product of instantaneous joint torques and joint velocities. Erden and Leblebicioglu [15] utilized 
modified simplex method along with Lemke’s Complementary pivoting algorithm to compute optimum foot 
force and torque distributions by considering a more practical locomotion performance objective, that is, 
minimization of energy dissipation. Although the above attempt could find the optimal values of feet forces 
of the multi-legged robot, they might not be suitable for real-time implementations because the used 
optimization techniques were iterative in nature. Moreover, due to inherent complexity of a realistic walking 
robot, it is not an easy task to include inertial terms in the modeling.  

The most of the studies on walking dynamics were conducted with a simplified model of legs and 
body. However, in order to have a better understanding of walking and other important issues of walking, 
such as dynamic stability, energy efficiency and on-line control, kinematic and dynamic models based on a 
realistic walking robot design are necessary. Here, an attempt has been made to carry out kinematics, 
dynamics and optimal feet force distributions of a realistic four-legged robot. 
 
 
2. MATHEMATICAL FORMULATION OF THE PROBLEM 

This section deals with mathematical formulation of the problem and explains the proposed methods 
to find optimal feet forces. 

 
2.1.  Kinematics and Foot Trajectory Analysis 

The robot considered in this study (Figure 1) consists of a trunk body of rectangular cross-section 
and four legs, which are similar and symmetrically distributed on either sides of the trunk body. Each leg has 
three powered rotary joints with the typical articulated (RRR) configuration, i.e. the second and third joints’ 
axes are parallel to each other and perpendicular to the first joint’s axis. The three actuators are dc-
servomotors with a permanent-magnet stator. The Denavit-Hartenberg (D-H) notations [16] have been used 
in kinematic modeling of each leg (refer to Figure 2).Table 1 shows four D-H parameters, namely link length 
(ai), link twist (αi), joint distance (di), and joint angle (θi), required to completely describe the leg mechanism. 

  
 

 
 
 
 
 
 
 
 
 
 

Table 1. D-H parameters for three joint legs 
Link 
no. 

ai αi di θi 

1 a1=0.085m 90° 0 θ1 
2 a2=0.100m 0 0 θ2 
3 a3=0.115m 0 0 θ3 
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The homogeneous transformation matrix [17] describing the relative translation and rotation between ith and 
(i-1)th coordinate systems is represented as follows: 
 

i i i i i i i

i i i i i i ii-1
i

i i i

cosθ -sinθ cosα sinθ sinα a cosθ

sinθ cosθ cosα -cosθ sinα a sinθ
=

0 sinα cosα d

0 0 0 1

 
 
 
 
 
 

T  

 
Thus, foot tip reference frame {3} can be expressed in the leg reference frame {0} as given below. 
 
0 0 1 2

3 1 2 3=T T T T          

( )
( )

1 2 3 1 2 3 1 1 2 2 3 2 3 1

0 1 2 3 1 2 3 1 1 2 2 3 2 3 1
3

2 3 2 3 2 2 3 2 3

cosθ cos(θ +θ ) -cosθ sin(θ +θ ) sinθ a +a cosθ +a cos(θ +θ ) cosθ

sinθ cos(θ +θ ) -sinθ sin(θ +θ ) -cosθ a +a cosθ +a cos(θ +θ ) sinθ
T =

sin(θ +θ ) cos(θ +θ ) 0 a sinθ +a sin(θ +θ )

0 0 0 1

 
 
 
 
 
 

  

 
Now, the position of the robot’s foot tip can be represented in its general form as given below. 
 
[a1+a2 cosθ2+a3 cos(θ2+θ3)] cosθ1 = px ,        (1) 
 
[a1+a2 cosθ2+a3 cos(θ2+θ3)] sinθ1 = py ;       (2) 
 
a2 sinθ2+a3 sin(θ2+θ3) = pz         (3) 
 
By solving equations (1), (2) and (3), the joint angles: θ1, θ2 and θ3 have been determined.  
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Figure 2. D-H representation of link frame Figure 1. The model of four-legged robot 

 

    

    

    

 
 
 

Figure 3. Gait diagram with duty factor 3/4 
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The robot moves straight forward at a constant velocity on flat surface with continuous gait (duty 
factor β=3/4) (refer to Figure 3). To ensure a smooth path to be followed, each joint trajectory followed by 
the swing leg joints is assumed to be governed by a fifth degree polynomial which is a function of time (t). 
The jth joint of a swing leg, that is, θj can be represented in fifth-order polynomial as follows: 
  

θj = cj0+cj1t+cj2t
2+cj3t

3+cj4t
4+cj5t

5+cj6t
6      (4) 

  
where cj0, cj1, cj2, cj3, cj4, cj5 and cj6 are the coefficients, whose values are determined using a set of boundary 
conditions defined over the swing phase and j=1, 2, 3 joints. The boundary conditions of joint angles at at 
initial, middle and final points, joint rates and joint accelerations at initial and final points of the trajectory are 
applied to find the seven coefficients for each joint. The joint rate and joint acceleration equations of each 
joint of a swing leg can be obtained using the following equations: 
 

  2 3 4 5
j j1 j2 j3 j4 j5 j6θ =c +2c t+3c t +4c t +5c t +6c t&      (5) 

 

  2 3 4
j j2 j3 j4 j5 j6θ =2c +6c t+12c t +20c t +30c t&&      (6) 

 
The joint rate and joint acceleration equations of for each leg during the support phase can be expressed as 
follows: 
 

1−
θ = J p& & ,        (7) 

 
1( )− −θ = J p Jθ&& &&&& ,        (8) 

 
where the position vector p=[px py pz]

T, θθθθ=[θ1 θ2 θ3]
T and J is the Jacobian matrix, which has been obtained 

as given below. 
 

( ) ( )
( ) ( )

1 2 2 3 2 3 1 2 2 3 2 3 1 3 2 3 1

1 2 2 3 2 3 1 2 2 3 2 3 1 3 2 3 1

2 2 3 2 3 3 2 3

a +a Cθ +a C(θ +θ ) Sθ a Sθ +a S(θ +θ ) Cθ -a S(θ +θ )Cθ

a +a Cθ +a C(θ +θ ) Cθ a Sθ +a S(θ +θ ) Sθ -a S(θ +θ )Sθ

0 a Cθ +a C(θ +θ ) a C(θ +θ )

− − 
 = − 
  

J   (9) 

 
 
2.2.  Dynamics of Four-legged Robot 

A four-legged robot is a complex linkage system, whose legs are connected to one another through 
the trunk body and also through the ground, and thus, forms closed kinematic chains. The basic problem of 
controlling these kinematic chains is their coordination. In addition to the local coordination problem, which 
involves control of the individual joints of a leg to achieve the desired tip control, there is a global 
coordination problem involving coordination among several chains of the multiple legs. The forces and 
moments propagate through the kinematic chains from one leg to another, and therefore, dynamic coupling 
exists. The equations of motion for such a complex mechanism with four legs, each of which has three 
degrees of freedom, are derived by applying Lagrangian dynamics formulation [17] together with Denavit-
Hartenberg’s link coordinate representation, and the derived relationships are given in the vector-matrix form 
as follows: 

 

   [ ] [ ] [ ]T

i i ii ii i
      τ = M(θ) θ + H(θ,θ) + G(θ) - J F&& & ,   (10) 

 

where M(θθθθ) is the mass matrix of the leg, ( )H θ,θ& is a  vector of centrifugal and Coriolis terms, G(θθθθ) is a 

vector of gravity terms, ττττi  is the vector of joint torques,  Ji is the Jacobian matrix and Fi is the vector of 
ground reaction forces of i th foot. During the leg swing phase, there is no foot-terrain interaction, and Fi 
becomes equal to zero. However, during the support phase, ground contact exists and equation (10) becomes 
undetermined, which has to be solved using an optimization criterion, for example, optimal foot force 
distribution. 
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2.3.  Optimum Feet Force Distributions 
The problem of feet forces’ distributions has been solved using three approaches, namely 

minimization of norm of feet forces (approach 1), minimization of norm of joint torques (approach 2) and 
minimization of norm of joint work (approach 3). 
 

 

 

 

 

 

 

 

Approach 1: Minimization of Norm of Foot Forces 

The contact between the foot tip and the ground is assumed to be hard-point contact with friction, which 
implies that the forces acting at the tip-point are restricted to three components, one normal and two 
tangential to the surface. Let us assume that Fi=[fxi, fyi, fzi]

T is the ground-reaction force vector on foot i 
(where i=1,2, 3). The wrench W=[ Fx, Fy, Fz, Mx, My, Mz]

T contains the forces (Fx, Fy, Fz) and moments (Mx, 
My, Mz) acting on the robot’s center of gravity and represents the robot’s payload, including the effect of 
surface gradient, any externally applied forces and inertial effects of the robot’s body (refer to Figure 4). 
However, the inertial effects of the legs have been neglected to simplify the study. The trunk body is held at a 
constant height and parallel to the ground plane during locomotion. Under these conditions, six equilibrium 
equations that balance forces and moments can be written in matrix form as given below. 
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y1
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z1
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z

y2
1 1 2 2 3 3 x

z2
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f
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f =
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f
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    
    
    
    
    
    
    
         
 
 

    (11) 

The above matrix can be written as follows: 
 

 [C].[F] = [W]          (12)  
 

The coordinates of ith foot-ground contact point with respect to body reference frame, located at the body’s 
geometric center, are denoted by (xi, yi, zi).  

With the known feet positions, the feet forces during a whole locomotion cycle can be computed 
using equation (12), which is indeterminate, because it consists of six equations and nine unknowns. The 
solution of equation (12) has been obtained using the least squared method [18], which gives the minimum 
norm solution of the indeterminate equilibrium equations. In other words, it is the solution that minimizes the 
sum of the squares of components of feet forces. The solution is written in a matrix form as given below.  

 

[ ] [ ] [ ]  
-1T TF = C C.C W  

 
Approach 2: Minimization of Norm of Joint Torques 

In this approach, the equation (12) can be re-formulated by using the following relations. 

Figure 4. A schematic view showing feet contact forces acting on the robot 
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[F] = [D].[ττττ]          (13) 
 

 where 

1

2

3

 
 
 
 
 

3 3

3 3

3 3

J 0 0

[D] = 0 J 0

0 0 J

; 
-1i T

i=   J J  ; and Ji is the (3×3) Jacobian matrix of leg i and 03 is the (3×3) null 

matrix. Here, [ττττ]=[ττττ1, ττττ2, ττττ3]
T and ττττi=[τ1i, τ2i, τ3i]

T is the torque vector containing three joint torques at leg i 
(i=1, 2, 3).  
The equation (12) can be re-written as follows: 
 

[C].[D].[ττττ] = [W]         (14) 
 
[CD].[ττττ] = [W]         (15) 
 

The minimum norm solution of the above indeterminate equations (i.e., solution that minimizes the sum of 
the squares of joint torques) has been obtained using a least squared method. The solution is written in a 
matrix form as given below.  
 

[ ] [ ] [ ]  
-1T T

D D Dτ = C C .C W  

 
Feet forces can be determined with the help of equation (13). 
 
 
Approach 3: Minimization of Norm of Joint Power 

In this approach, the equation (13) can be re-formulated by using the following relations. 
 

[ττττ]= [V].[P]           (16) 
 

 where 

 
 
 
 
 

1
3 3

2
3 3

3
3 3

ω 0 0

[V] = 0 ω 0

0 0 ω

; 

-1

1i
i

2i

3i

θ 0 0

= 0 θ 0

0 0 θ

 
 
 
 
 

ω

&

&

&

 and ( )1i 2i 3iθ θ θ& & & are three joint velocities of leg i. 

Here, [P]=[P1, P2, P3]
T and Pi=[p1i, p2i, p3i]

T is the joint power matrix containing three joint mechanical 
power at leg i (i=1, 2, 3).  
The equation (13) can be re-written as follows: 
 

[F] = [D].[V].[P]           (17) 
 
[C].[D].[V].[P]   = [W]        (18) 
 
[CDV].[P] = [W]         (19) 
 

The minimum norm solution of the above indeterminate equations (i.e., solution that minimizes the sum of 
the squares of joint mechanical power) has been obtained using a least squared method. The solution is 
written in a matrix form as given below.  
 

[ ] [ ] [ ]  
-1T T

DV DV DVP = C C .C W  

 
Feet forces can be obtained with the help of equations (13) and (16). 
Once the torques required at various joints are calculated using equation (10), the amount of power consumed 
at those joints can be estimated. At a given joint ‘i’, the required mechanical power is calculated as: 
 

T

i i i

0

1
P = τ θ dt

T ∫
        (20) 
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Therefore, the total power consumed by all joint (number of joints=12) can be determined as follows: 
 

  
12

i
i=1

P= P∑          (21) 

 
 

3. RESULTS AND ANALYSIS 
In this section, simulation results of the proposed three approaches have been discussed in detail.  

Table 2 shows the physical parameters of each leg of a real four-legged robot (computed utilizing CATIA 
solid modeling software package), which have been used in simulations. In computer simulations, the 
walking parameters, like height of the trunk body, velocity of the body, stroke and duty factor, are fed as 
inputs, whereas the distributions of feet forces and joint torques are considered as the outputs. The cycle time, 
leg stroke, body height, and velocity of the trunk body are assumed to be equal to 4 sec, 0.15 m, 0.13 m and 
0.05 m/sec, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 5, 6 and 7 show the distributions of foot forces obtained by approaches 1, 2, and 3, respectively over 
one locomotion cycle.  It shows that the front and rear legs complement each other in force, such that the sum 
of vertical forces of all the ground legs at any given instant of time becomes equal to the weight of the robot.  
Approach 1 has yielded the forces with either zero or almost zero horizontal components during the phase of 
constant velocity of the trunk body; therefore, the robot does not make a good use of the friction.  However, 
in approaches 2 and 3, horizontal components of the foot forces are found to be significant. These results are 
quite similar to that reported by Erden and Leblebicioglu [15]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Physical parameters of each leg of the four-legged robot 
Link parameters Link 1 Link 2 Link 3 

Mass (kg) m 0.152 0.04 0.106 
Length (m) L 0.085 0.115 0.100 

Position of Center of 
mass (10-3 m) 

x -71.22 -71.40 -97.33 
y -14.04 -2.47 0.98 
z 0.00 8.21 -3.43 

Moment of Inertia 
(10-4 kg-m2) 

Ixx 1.00 0.23 0.22 
Iyy 8.28 3.07 10.00 
Izz 9.09 2.91 10.01 

Product of Inertia 
(10-4 kg-m2) 

Ixy -1.57 -0.141 0.103 
Ixz -0.113 0.364 -0.376 
Iyz -0.037 0.018 0.0036 
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Figure 5. Distributions of feet forces obtained by approach 1 

 

  

  
 

Figure 6. Distributions of feet forces obtained by approach 2 
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Figure 7. Distributions of feet forces obtained by approach 3 
 
 
 

  

  
 

Figure 8. Variations of joint torques at each joint of the legs obtained by Approach 1 
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Figure 9. Variations of joint torques at each joint of the legs obtained by Approach 2 

 
 

  

  
Figure 10. Variations of joint torques at each joint of the legs obtained by Approach 3 
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Figures 8 to 10 represent the variations of torques at each joint of the legs during one locomotion 
cycles as obtained by approaches 1 to 3. It is interesting to note that for a particular ground leg, the maximum 
torque generated at joint 2 has turned out to be more compared to that at other two joints. Moreover, joint 
torques of the legs during the support phase have been found to be more than those during the transfer phase, 
as expected. A close watch on Figure 8 (that is, result of Approach 1) indicates that joint 2 of each leg is 
subjected to the maximum amount of torque than that at other joints (namely joints 1 and 3). Therefore, if we 
select joint motors based on the torque requirement at joint 2, these motors will be under-utilized at joints 1 
and 3. Otherwise, the size and capacity variations of different joint motors will be significant. In approach 2, 
the variations of torque requirement at different joints of the middle and other legs are seen to be relatively 
less than that of approach 1. Thus, in approach 2, the variations among joint motors will be less compared to 
that in approach 1. 
 

Table 3. Average values of the power consumption obtained by three approahes 
Approaches Average power consumption 

(Watts) 

Approach 1 0.0731 

Approach 2 0.1551 

Approach 3 0.0706 

 
 

Table 3 shows the average values of the joint power of the four-legged robot obtained by three 
approaches. The average value of joint power of the robot as obtained by approach 3 is seen to be lesser than 
that yielded by other two approaches. It can be concluded that by approach 3 is more energy efficient foot 
force formulation than other two approaches. 

 
 

4. CONCLUSION  
In the present work, both the kinematics and dynamics of a four-legged robots’ locomotion has been 

solved. An attempt has also been made in present study to obtain optimal distributions of feet forces. Three 
approaches, namely, minimization of norm of feet forces (approach 1), minimization of norm of joint torques 
(approach 2) and minimization of norm of joint work (approach 3) have been developed. It is important to 
mention that approach 3 is seen to be more energy efficient compared to other two approaches. Joint torques 
have been estimated using Lagrange-Euler formulation of the rigid multi-body system. The developed 
kinematic and dynamic models have been examined for continuous gait of the said robot. This work can be 
extended to tackle the problems related to discontinuous and non-periodic gait of the multi-legged walking 
robots. 
 
 
ACKNOWLEDGEMENTS 

Authors acknowledge all support from Department of Mechanical Engineering, NIT, Durgapur. The 
authors are thankful to Prof. D.K. Pratihar, IIT, Kharagpur, for his help and guidance. 
 
 
REFERENCES  
[1] T.W. Koo, Y.S. Yoon, “Dynamic instant gait stability measure for quadruped walking,” Robotica, vol. 17, pp. 59-

70, 1999.  
[2] F. Pfeiffer, H.J. Weidemann, P. Danowski, “Dynamics of walking stick insect,” IEEE International Conference on 

Robotics and Automation, pp. 1458-1463, 1987.  
[3] S. Freeman, D. E. Orin, “Efficient dynamic simulation of a quadruped using a decoupled tree-structure approach,” 

The International Journal of Robotics Research, vol. 10(6), pp. 619-627, 1991. 
[4] B.S. Lin, S.M. Song, “Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine,” 

IEEE International Conference on Robotics and Automation, pp. 367-373, 1993.  
[5] D. Howard, S.J. Zhang, D.J. Sanger, “Kinematic analysis of a walking machine,” Mathematics and Computers in 

Simulation, vol. 41, pp.  525-538, 1996. 
[6] D.M. Gorinevsky, A.Y. Shneider, “Force control in locomotion of legged vehicles over rigid and soft surfaces,” 

The International Journal of Robotics Research, vol. 9(2), pp. 4-23, 1990.  
[7] W.Y. Jiang, A.M. Liu, D. Howard, “Foot-force distribution in legged robots,” Proc. of 4th Int. Conf. in Climbing 

and Walking Robots, Karlsruhe, Germany, pp. 331-338, 2001.  



      �          ISSN: 2089-4856 

IJRA Vol. 1, No. 4, December 2012 :  223 – 234 

234 

[8]  J.P. Barreto, A.Trigo, P. Menezes, J. Dias, A.T.de Almeida, “FBD-The free body diagram method. Kinematic and 
dynamic modeling of a six leg robot,” in: IEEE International Conference on Robotics and Automation, pp. 423-
428, 1998.  

[9]  P. Gonzalez de Santos, J. Estremera, E. Garcia, “Optimizing leg distribution around the body in walking robots,” 
Proc. of IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, pp. 3207-3212, 2005.  

[10] D. Zhou, K.H. Low, T. Zielinska, “An efficient foot-force distribution algorithm for quadruped walking robots,” 
Robotica, vol. 18, pp. 403-413, 2000.  

[11] J.F. Gardner, “Efficient computation of force distributions for walking machines on rough terrain,” Robotica, vol. 
10, pp. 427-433, 1992.  

[12] D. W. Marhefka, D.E. Orin, “Quadratic optimization of force distribution in walking machines,” Proc. of IEEE 
International Conference on Robotics and Automation, Lueven, Belgium, pp. 477–483, May, 1998. 

[13] D.C. Kar, K. Issac, K. Jayarajan, “Minimum energy force distribution for a walking robot,” Journal of Robotic 
Systems, vol. 18(2), pp. 47-54, 2001. 

[14] B.S. Lin, S.M. Song, “Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine,” 
Journal of Robotic Systems, vol. 18(11), pp. 657–670, 2001. 

[15] M.S. Erden, K. Leblebicioglu, “Torque distribution in a six-legged robot,” IEEE Transaction on Robotics, vol. 
23(1), pp. 179-186, 2007.  

[16] J. Denavit, R.S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,” ASME Journal 
of Applied Mechanics, vol. 77, pp. 215-221, 1955.  

[17] K.S. Fu, R.C. Gonzalez, C.S.G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, McGraw Hill, Singapore, 
1987.  

[18] S. Chapra, R. Canale, Numerical Methods for Engineers, fifth ed., Tata McGraw-Hill Education Private Limited, 
New Delhi, 2006. 

 
 
 
BIOGRAPHIES OF AUTHORS  
 
 

 

 
Saurav Agarwal is an undergraduate student in the Department of Mechanical Engineering at 
National Institute of Technology, Durgapur, India. His research interests include modeling and 
simulation of multi-legged robots. 
 
 
 

  
 

 

 
Abhijit Mahapatra received his B.E and M.Tech degrees in Mechanical Engineering from B.E. 
College, Shibpur and NIT, Durgapur in 2002 and 2008, respectively. Currently, he is working as 
a Scientist in Virtual Prototyping and Immersive Visualization Lab., CSIR- Central Mechanical 
Engineering Research Institute, Durgapur, India. He has published number of research papers in 
national and international journals, conference proceedings and filed number of patents in area of 
product development. His current research interests include design & analysis, multi-body 
dynamics, modeling and simulation of legged robots. 

  
 

 
 

 
Shibendu Shekhar Roy received his B.E and M.Tech degrees in Mechanical Engineering from 
R.E. College, Durgapur (Presently, NIT, Durgapur) in 1999 and 2001, respectively. He obtained 
his Ph.D from IIT, Kharagpur, India, in 2011. Currently, He is an Assistant Professor in the 
Department of Mechanical Engineering, National Institute of Technology, Durgapur, India. 
From March 2001 to December 2006 he was a Scientist at the Central Mechanical Engineering 
Research Institute, Durgapur, CSIR, India. He has published a great deal of research papers at 
national and international journals, conference proceedings, book chapters and filed number of 
patents in product development. He has written a book on “Modeling and analysis of six-legged 
robots”, which has been published by Lap Lambert Academic Publishing GmbH & Co. KG, 
Germany. His current research interests include application of computational intelligent tools 
like Fuzzy logic, Genetic algorithm, Neural networks etc. for modelling of different 
manufacturing process and robotic systems. 

 
 


