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ABSTRACT

This paper presents classification of grasp types based on surface electromyo-
graphic signals. Classification is through radial basis function kernel support vec-
tor machine using sum of wavelet decomposition coefficients of the EMG signals.
In a study involving six subjects, we achieved an average recognition rate of 86%.
The electromyographic grasp recognition together with a 8-bit microcontroller has
been employed to control a five fingered robotic hand to emulate six grasp types
used during 70% daily living activities.
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1. INTRODUCTION
Electromyogram (EMG) signal classification to detect various upper-limb movements have been used

for many applications, including hand prosthesis control and human computer interface for last two decades.
Hiraiwa et al. has classified five finger movements based on single channel EMG using FFT analysis [1].
Classification of four grasp modes using principal component analysis and Mehalanobis distance function
based on four channel EMG signals has been reported by Vuskovic [2]. Nishikawa et al. has reported ten
forearm motions discrimination based on two channel EMG using real time learning method [3]. Chan et
al. has classified four hand functions based on single channel EMG [4]. Crawford et al. shows the control
of four degrees of freedom (DOF) robotic arm based seven channel EMG with 90% accuracy using linear
kernel support vector machine for eight class classification of hand movements [5].

Despite serious research in the field of rehabilitation robotics, not much has been achieved for
grasps manipulation by prostheses. Ferguson and Dunlop [6] have reported grasp types classification based
on EMG, wherein four types of grasps have been classified with an average recognition rate of 75-80% using
four channel EMG signals. Martelloni et al. [7] have performed the classification of three grasp types based
on eight channel EMG with a recognition rate of 84-93%. Both Fergunsons and Martellonis architectures are
subject dependent. More recently, results on grasp type recognition, reported by Castellini et al. [8] is limited
to the classification of only three distinct types of grasps using ten surface electrodes with a recognition rate
of 90%. Castellini et al. [9] has shown the classification of two grasp types based on seven channel EMG
signals with a recognition rate of 97%. Kakoty and Hazarika [10] has reported the classification of six grasp
types with an average recognition rate of 97.5% using two channel EMG.

Almost all literature reports only on the classification of EMG signals and their application for
controlling finger movements in robotic hand, not for robotic hand grasping operations [11]. For details in
EMG based robotic hand control, see Oskoei et al. [12]. Antflok et.al [13] had successfully rehabilitated
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an amputee using 16 channel EMG signals and controlled a hand prosthetic known as the Smart Hand.
Classification of the signals was done using local approximation and lazy learning. The feature used was
mean value of preprocessed EMG signals. The experimentation achieved an accuracy rate of 86% and has
been implemented to a robotic hand for performing three grasp types used during daily living activities (dla).
Only recently, Cipriani et al. has reported the development of SmartHand capable of performing three grasp
types used during dla [14].

The work presented in this paper stems from the desire to create an advanced prosthetic system
capable of preshaping and grasping. The focus is on development of an electromyographic control for a
five fingered robotic hand: TU Bionic Hand [15]. We concentrated on six grasp types used during 70% of
dla. The classification of six grasp types is based on two channel EMG signals through radial basis function
(RBF) kernel support vector machine (SVM). Sum of wavelet decomposition (SWC) coefficients has been
used as feature for classification of grasp types based on EMG signals. An average recognition rate of 86%
is achieved. The developed control architecture has been employed to control the five fingered robotic hand
emulating the six grasp types.

Rest of the paper is arranged as follows: Section 2. discusses grasp types and EMG signals. The
derivation of the feature set is in Section 3. Electromyographic control based on crasp recognition is in
section 4. The grasp classification through SVM and recognition results and feed forward control of five
fingered robotic hand are discussed in section 4.1. and 4.2. The paper concludes with final comments in
section 5.

2. GRASP TYPES AND ELECTROMYOGRAM
2.1. Grasp Types

For activities such as lifting, lowering, carrying, pushing and pulling etc., grasp is the type of interface
between the subject’s hand and the object to be handled. For control of the prosthetic hand, we aim to
identify the basic grasp shapes made by the user. An extensive list of grasp types has been reported by M.
R. Cutkosky [16]. Based on the wrist orientation, grasp span and strength involved, grasps are categorized
into six different types i.e. power, pinch, precision, oblique, hook and palm-up [17]. This classification of
grasps for different common operations has been found closer to one in Heumer et al. [18] rather than one
given by Fiex et al. [19]. Heumer et al. identified six different grasp types, whereas Fiex et al. has a
classification that identifies seventeen grasp types. Six grasp types, as shown in Figure 1 are significant for
they are involved in 70% of dla [20].

Figure 1. Grasp types: a. Power b. Palm-up c. Hook d. Oblique e.
Precision and f. Pinch

2.2. Electromyogram Acquisition and Integrated Electromyogram

2.2.1. Action Potential and Electromyogram Signals

Muscle fibers are innervated by neurons whose cell bodies are located in spinal cord. The combination
of a single motor neuron and all the muscle fibers it innervates is called a motor unit. In response to an
action potential from the neuron, a muscle fiber depolarizes as the signal propagates along its surface and
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the fiber contracts. This depolarization followed by repolarization generates an electric field in the vicinity
of the muscle fibers. The resulting signal is called the muscle fiber action potential. The combination of
the muscle fiber action potentials from all the muscle fibers of a single motor unit is the motor unit action
potential (MUAP). The schematic diagram of motor unit action potential is shown in Figure 2.
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Figure 2. Motor Unit Action Potential showing Depolarization, Repolarization
and Resting Potential

The summation of action potentials created by each active motor unit is the electromyogram signal
which can be detected by a skin surface electrode. They generally are in the range of 10 Hz to 10 kHz; 10
µV to 15 mV. The type, number and firing rates of motor units involved in grasping operations varies during
different grasps [21]. The EMG signals generated during different grasp types epitomize it.

2.2.2. Electromyogram Acquisition

Obtaining accurate data from EMG signals depends partially on specific electrode placement and
site preparation. One of the most important consideration in site preparation is reducing the amount of
impedance between electrode and skins surface. Electrode gel was applied to the site of electrode placement
in order to further increase its performance. We acquired EMG signals continuously from the state of the
preshaping initiation by the upper limb for a particular grasp type till it takes a closure mode. The aim of
doing so is to collect informations about the attempted grasp types from the EMG onset prior to grasp is
formed. Ag/AgCl buttom type surface electrodes are used. In line with the work by Crawford et al. 2005,
the placement of the electrodes on the subjects forearm is tabulated in Table 1 [5]. Two channel EMG
signals were recorded for a period of 250 msec. This is to meet the real time constraint that the response
time of myoelectric control system should be less than 300 msec [22].

Table 1. Placement of EMG Electrodes

Electrode Number Electrode Leads Specific Muscle
Electrode1 Lead1 Extensor Digitorum Muscle

Lead2 Flexor Digitorum Muscle
Electrode2 Lead1 Flexor Carpi Ulnaris Muscle

Lead2 Extensor Carpi Radialis
Longus Muscle

After a hand amputation, much of the forearm remain and can still be used by the amputee. Al-
though our study used healthy subjects, there is evidence that amputees who have lost their hand are able
to generate EMG signals from the remanent forearm muscles that are very similar to those generated by
healthy subjects [5, 23]. EMG could thus can be read from these and used as the control source for prosthetic
device [6].
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2.2.3. Integrated Electromyogram

The raw EMG signals obtained needs to be preprocessed for accurate record and display for further
processing. They are passed through high pass, low pass and notch filter using AD Power Lab 4/25 T.
The EMG signals obtained after filtration and amplification are called integrated electromyogram (IEMG).
Table 2 illustrates the specification setting of the EMG unit during EMG acquisition.

Table 2. EMG Unit specification settings during Signal Acquisition

Parameter Value
CMRR 110 dB
Low pass cut off 2 kHz
High pass cut off 10 Hz
Notch filter cut off 50 Hz
Amplification range +/-5 V

3. FEATURE SET

Features are the informations extracted from the signal and can characterize the signal with a smaller
set of data. Wavelet transform (WT) is a multiresolution representation that expresses signal variation at
different scales. Being highly transitional with sharp peaks and discontinuities, EMG signal analysis with
WT is advantageous compared to Fourier transform. SWC can be inferred as the difference between two
approximations at subsequent scales [24] and corresponds to the frequency components of the original signal
[25, 26]. During grasping, the number of motor units firing, varies according to the involvement of the
forearm extensor and flexor muscles [21]. Further, the firing rate of motor units associated with control
and co-ordination of finger movements during grasping operations, varies according to the grasp type [27].
Consequently EMG for each of the grasp types is the composite of different frequency components. We used
SWC as the feature for classification of grasp types [28].

3.1. Derivation of Feature Set

Let X(t) be the raw EMG signal. The IEMG signal Xi(t) is obtained from raw EMG signal by
amplification and filtering operations. Xi(t) is expressed as:

Xi(t) = g

∫ ω2

ω1

X̂(t)dω

where
X̂(t) = EMG signal after 50 Hz notch filtering
g = gain of the EMG unit
ω1, ω2 = Low and high cutoff frequency of the band pass filter

DWT decomposes a signal into an approximation signal and detail signal. The detail coefficients Dj

and the approximation coefficients Aj at level j can be obtained by filtering the signal with an L-sample high
pass filter g, and an L-sample low pass filter h. Both approximation and detail signals are down sampled by
a factor of two [29]. This can be expressed as follows:

Aj [n] = H〈Aj − 1[n]〉 =

L−1∑
k=0

h[k]Aj − 1[2n− k]

Dj [n] = G〈Dj − 1[n]〉 =

L−1∑
k=0

g[k]Aj − 1[2n− k]
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where H and G represent the convolution/ down sampling operators. Sequences g[n] and h[n] are
associated with wavelet function ψ(t) and the scaling function φ(t) through inner products:

g[n] = 〈ψ(t),
√

2ψ(2t− n)〉
h[n] = 〈φ(t),

√
2φ(2t− n)〉

The approximate coefficients contain the most important information of the signal [30] and is there-
fore used for deriving the feature set. The sum of the Haar wavelet coefficients ρ is computed and input as
the feature vector to the classifier. The input feature ρ is given as:

ρ =

N∑
n=1

Aj [n]

where N is the total number of Haar wavelet coefficients.

4. ELECTROMYOGRAPHIC CONTROL BASED ON GRASP RECOGNITION
Figure 3 shows the schematic diagram of EMG based control architecture. The fundamental units

are the EMG Unit, Feature Extraction Unit and the Classifier Unit. The EMG unit comprises of the
amplifier, band pass and notch filter. The filtered signals were sampled with 5 kHz sampling frequency. The
features were extracted from the IEMG signals in the feature extraction unit. The extracted feature is fed
to the classifier. Classification is through a RBF Kernel One-vs-All SVM clustering six grasp types.
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Figure 3. Electromyographic Control Architecture for a Five Fingered Robotic Hand

4.1. Grasp Classification

SVM for Classification
For recognition of grasp types based on the extracted feature, we chose to employ was a RBF kernel SVM.
In terms of selecting a kernel function to use with the SVM, there is no method that can determine what
kernel function should be used for a particular application. According to [31], the RBF kernel should be
the first choice. Another reason to use the RBF kernel is that there are less difficulties with mathematical
computations. SVM implicitly map the input data into the feature space where a decision boundary separates
the classes that may exist. For the classification of non linear and highly transitional data, the formulation
of linear hyperplane is extended to build non linear SVM kernel. Non linear kernel transforms the input
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data into higher dimensional feature space where data can be linearly separated by applying linear SVM
formulation [27].

In SVM classifier, the input feature set (ρx and ρy) of two channel IEMG for all grasp types were
mapped into high dimensional feature space by RBF kernel K as:

〈ρx, ρy〉 → K(ρx, ρy) where K(ρx, ρy) = e[|(ρx−ρy)
2|/σ2]

with σ being the scale factor. The hyperplane separating the feature vectors in higher dimensions
is given by

f(x) = b+

F∑
i=1

wi.Yi satisfying min[φ(wi)] = 1/2(wi.wi)

where b = bias term, F = total number of input features, w = normal to the feature spaces and

Yi = +1 if wiρ+ b > 1 or

Yi = −1 if wiρ+ b < 1

Training and Testing
During training, six subjects performs the grasp types taken under study. All subjects performs each grasps
in six trials. The training phase was accomplished with a total of 216 two channel EMG signals. The feature
set is extracted from IEMG signals of 480 msec. Training for each grasp type takes 560 ms on a Pentium 2
GHz processor. In testing, six subjects perform each grasps types eight times randomly. A total of 288 two
channel EMG signals were used for testing of the proposed architecture. The resulting hyperplanes of SVM
plots lead to six grasp types. Testing for one grasp type takes 520 msec on a Pentium 2 GHz processor.

Recognition Rates
The classification and misclassification rates of grasp recognition is shown in Figure 4. For power grasp,
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Figure 4. Confusion Matrix for Classification of Six Grasp Types
based on SWC

88% is correctly classified; whereas 5% is misclassified as oblique and 7% as hook. For palm-up grasp, 88%
is classified correctly; whereas 2% is misclassified as power, 4% is misclassified as oblique and another 6%
is misclassified as hook. For oblique grasp, 94% is correctly classified whereas 2% is misclassified as power,
4% is misclassified as hook. For hook grasp, 94% is classified correctly whereas 4% is misclassified as power
and 2% is misclassified as oblique. For pinch grasp, 88% is classified correctly whereas 4% is misclassified
as hook and 8% is misclassified as precision. For precision grasp, 66% is classified correctly whereas 14%
is misclassified as hook and 20% is misclassified as pinch. The average recognition rate in classifying the
testing data into six grasp types is 86% and is tabulated in Table 3.
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Table 3. Recognition Rates

Grasp Type Recognition Rate
Power 88%
Palm-up 88%
Oblique 94%
Hook 94%
Pinch 88%
Precision 66%

4.2. Feed Forward Control

The grasp recognition results from the Classification Unit have been implemented on TU Bionic Hand
- a five fingered prosthetic hand designed and developed at Tezpur University, India - shown in Figure 5. For
details of the TU Bionic Hand, please refer to our earlier paper [15]. As shown in Figure 5, the motors M1,
M3, M5, and M7 are for the flexion of the index finger; middle finger; ring and little finger (in conjunction)
and thumb. These are placed on the ventral side; the corresponding complementary motors M2, M4, M6,
M8 are for extension of index finger; middle finger; ring and little finger in conjunction and thumb are placed
on the dorsal side of the hand. Motor M9 is for inward motion of the palm in order to achieve stable grasp.
Motors M10, M11 and M12 are placed mutually perpendicular to each other for achieving 3 DoF at the
wrist. Table 4 details the mapping of the identified grasp type into the five fingered robotic hand. After

 

M1 M3 

M5 

M9 
M7 

M10 M11 

M12 

Figure 5. TU Bionic Hand: Ventral View

performing each grasp type, the corresponding complementary motors are actuated in order to have the
hand in normal pose. Figure 6 shows the hand performing a precision grasp.

5. FINAL COMMENTS

We present the results in discrimination of six grasp types: hook, oblique, palm-up, pinch, power
and precision and report 86% grasp recognition. SWC has been used as the feature for grasp classification.
Following an EMG based control, the five fingered robotic hand performs the grasping operations involved
during 70% daily living activities. We are continuing work to improve both the success rate and scope of
our controller with a aim to evolve a system wherein a disabled person makes a mental plan of execution of
the gesture he naturally feels for a given task and the prosthetic device executes the move!
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Table 4. Mapping of Identified Grasp Types into the TU Bionic Hand

Grasp Command to Command from Microcontroller Actuated Motors
Type Microcontroller Port 1, 2 and 3 to

Port 0 H-Bridge Circuit
Power 01 H Port 1: 11 H, Port 2: 81 H M1, M3, M5, M7, M9
palm-up 64 H Port 1: 48 H, Port 2: 86 H M2, M4, M6, M8, M9

Port 3: 01 H
Oblique 02 H Port 1: 11 H, Port 2: 01 H M1, M3, M5, M8
Hook 32 H Port 1: 11 H, Port 2: 41 H M1, M3, M5, M7, M9
Pinch 16 H Port 1: 01 H, Port 2: 80 H M1, M3, M7, M9
Precision 04 H Port 1: 80 H, Port 2: 11 H M1, M3, M7

Figure 6. TU Bionic Hand: Performing Precision Grasp
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