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 This paper focuses on precision automated pushing of multiple micro objects. 
An adaptive control system is proposed to accurately push and position the 
micro objects on a substrate. Each micro object exhibits different 
characteristics in terms of the surface micro forces governing the 
manipulation process. The controller is designed to compensate for the effect 
of the micro forces whose aggregated magnitude varies during the process. 
An experimental setup is designed to validate the performance of the 
proposed controller. The results of the experiments confirm that the proposed 
adaptive controller is capable of learning to adjust its parameters effectively, 
when the surface micro forces change under varying surface and ambient 
conditions. 
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1. INTRODUCTION 

In recent years, research efforts in the development of Micro Electro Mechanical Systems, (MEMS) 
including microactuators and micromanipulators, have attracted a great deal of attention. The development of 
microfabrication techniques has resulted in the advancement of surface machined-based microfabrication, 
which has made it possible to develop not only smaller microchips, but also various types of microsensors 
[1], microactuators [2], and lab-on-a-chip devices [3]. The microfabrication techniques are based on 
deposition and etching processes both of which are limited to fabrication of 2-dimentional structures. In order 
to fabricate 3-dimentional MEMS devices, it is inevitable to develop reliable tools for post-fabrication 
processes by which the precise and dexterous manipulation of individual 2-dimentional micro size objects is 
possible. Most of the micromanipulation methods reported in literature are tele-operated and labour intensive, 
requiring the intervention of a human user [4]-[7]. Current automated microassembly systems are comprised 
of a microgripper mounted on a multi DOF macro robotic station [8]-[10]. The long links in such 
microassembly manipulators significantly limit the dexterity of the manipulation within a very small space, 
where the micro structure lies. Therefore, multi DOF microactuators and microrobots are the ideal hardware 
for dexterous micromanipulation. 

Over the last decade, a number of micorobotics research labs have been established, and various 
microactuators and micro robots have been developed. These micro robots are either manually controlled, or 
their proper automation is limited to a specific system configuration [11]. The biggest challenge, regarding 
automated micromanipulation, has been the existence of micro forces that are dominant in 
micromanipulation, and barely known to researchers. Often, the arms and linkage in microactuators are 
compliant, and undergo a considerable amount of deflection during micromanipulation. Also, the power 
requirement of these microactuators is highly dependent on the micro forces exerted at the end effector [11],  
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[12]. Therefore, the precise positioning of the end effectors during micromanipulation is possible, only if a 
controller is implemented to effectively compensate for the micro forces in the process. 

In our previous paper, weintroduceda non-linear adaptive controller for automated pushing of a 
single micro-sized object using compliant microactuatorsalong a desired path [15]. In this work, we increase 
the complexity of the problem by letting the size and surface characteristics of the micro object change 
during the process of automated pushing.In other words, the goal of this paper is to design a non-linear 
adaptive controller to sequentially push multiple mizro-sized objects using compliant microactuators. 

This paper is organized as follow. The specification of the problem is defined in Section 2. In 
Section 3, dynamics of micromanipulation and design of a nonlinear control system is presented and its 
stability is discussed. Section 4 describes the hardware setup. Details of the controller parameters and 
specification of the software is explored in Section 5. Results of the experiments are provided in Section 6, 
and finally, Section 7 and 8 comprises discussion, conclusions, and application of this research.  
 
 
2. PROBLEM STATEMENT 

The specifications of the experiments in this paper follow. Three flat micro components are placed 
along a line with a separation distance of a few hundred micrometres.  The components are fabricated from a 
silicon wafer but have different dimensions and will be microassembled. A microassembly process is 
designed to operate according to the following procedures:  
a) The micro components are continuously fed to the microassembly line and placed at their initial station.  
b) Each of these components are then accurately pushed and positioned in a target station.  
c) In the target station, another micromanipulator is available to perform the post-pushing manipulation. 

In this paper, the automated sequential pushing of these three micro components from their initial 
stations to their specific target stations is discussed. The automated operation is performed with precision 
even under varying ambient conditions. 

 
 

3. CONTROL STRATEGY 
Consider the block diagram in Figure 1 where the micro objects are sitting on a glass which is, in 

turn, placed on a micro-stepper-motor-driven stage. A silicon cantilever tip is fixed from one end and is 
tangent to the side of one of the micro cube from its other end without any deflection. The x axis of the stage 
is resting in its origin. To push the micro object, we send the new position command X to the micro stage 
position controller. The micro stage motion moves the micro object against the micro tip, thus "pushing" the 
micro object along the x axis. The dynamic equation of motion of the micro object is described as: 

 

 
(1) 

 
Where fmf, Fd, , m and q  are the micro forces in the contact area, disturbance, mass and acceleration of the 

micro object, respectively, and Ks is the spring constant of the cantilever. The term,  fmf , which is also 
referred to as the surface micro forces, is affected by parameters such as surface roughness, temperature, 
humidity, velocity, applied force, geometry of the surface, materials, and electrostatic charge. This makes it 
extremely challenging to derive a model for this surface force. Unlike the case of conventional macro 
manipulation systems, this force is considerably large in comparison to the well-known gravitational force 
resulting from the mass, and cannot be treated as a negligible term. Also, the micro forces are dominant in 
micromanipulation, and therefore, cannot be incorporated into the disturbance, Fd, in (1). Therefore, it is 
advantageous to define a learning mechanism which can be trained to estimate this force under varying 
operating conditions. Therefore, the control strategy proposed consists of a linear PD controller and a 
nonlinear adaptive neural networks (NN) described in the following. 

In our previous work [13], we described a comprehensive methodology to aggregate all the 
influential parameters necessary to determine the overall micro surface force. This force can be represented 
as a function of the following variables: 

 
),,,,( AFqqff amf          (2) 

 
Where q is the position of the micro object on the substrate, q  is the velocity of the two surfaces in contact, 

Fais the applied force, and   is a vector of the environmental parameters, defined as follows: 

 

mq  fmf  Fd  Ks X
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),( TRH           (3) 

 
Where RH is the relative humidity, and T is the temperature.  

Given the desired position trajectory, the tracking error and its derivative are qqe d   and 

qqe d   . The filtered tracking error is expressed as: 

 
keer            (4) 

 
With k > 0. By differentiating (4) and invoking (1), the pushing dynamics can be described in terms of the 
filtered tracking error as: 
 

mekqmXKFAFqqfkmrrm dsdamf
2),,,,(    .    (5) 

 

 
Figure 1. Block diagram of the experimental setup 

 
 
The control law is defined as the following: 
 

     (6) 

 

Where is an estimate of , and  is an outer PD tracking loop.  

According to the universal approximation property of NN [14], there exist a two-layer NN such that: 
 

       (7) 

 
Where in the vector on input parameters affecting the micro forces, and the weight 

matrices, W and V, are unknown parameters that can be tuned online during pushing processes. These ideal 
target weight matrices are not necessarily unique. The approximation error is bounded on a compact set by 

, with  a known bound. The activation function  at the hidden layer is a nonlinear function 

(typically a sigmoid function) given by: 
 

        (8) 

 
It is very challenging to find the size of the matrices, W and V, which gives the arbitrary 

approximation error of .ε Therefore, the weight estimates of and are adopted to approximate the 
function, such that: 
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 .       (9) 

 
Consider the dynamic system of the micromanipulator, described by (5), for a bounded, continuous 

desired trajectory with bounded velocity and acceleration. In our previous work [15], we proved that the NN 
controller, (6), guarantees the Uniform Ultimate Boundedness (UUB) of the close-loop system with the gains 
satisfying kv-km>0, and the NN weight tuning functions given by: 

 

  ,      (10) 

 
Where, M and N are the constant positive definite matrices. In the controller, used for sequential pushing in 
this paper, the parameter of the surface area is added to the input of the NN according to (9). The value of the 
surface area is bounded. Therefore, the NN input vector is bounded, and consequently, the UUB of the 
nonlinear controller for sequential pushing of micro objects with different sizes is guaranteed. Moreover, the 
filtered tracking error, r(t), vanishes over time, similar to the controller discussed in [16]. 

 
 

4. HARDWARE SETUP 
The experimental setup is depicted in Figure 1. To track the micro cube and micro tip and to capture 

the camera frames of the pushing process, a high-definition CCD camera mounted on a high magnifying 
zoom lens is installed next to the stage, aligned along y axis. Attached to the microstage is a humidity-
temperature sensor which monitors the ambient conditions in real time.  

Figure 2 is a schematic of how the objects are initially positioned, as well as the target position after 
pushing operation. 

The square objects used for this experiment are diced out from a 50µm thick silicon wafer. The sizes 
of the objects are 125x125µm, 150x150µm, and 200x200µm.  Also, the substrate on which the objects are 
and the cantilever to push the objects consists of silicon.  The cantilever is 14mm long, 200µm wide, and 
50µm thick. The cantilever and micro objects are rinsed with acetone and IPA. Then, they are rinsed once 
more with acetone.  The cantilever is placed in its containing clip and grounded to prevent any static charges 
on the surface.   
 

 
 

 

 

 

 

 

 
Figure 2. Initial and target position of the micro objects during the automated sequential micromanipulation 

 
 

5. CONTROLLER AND SOFTWARE DESIGN 
Three sinusoidal trajectories are chosen as the desired trajectories of the pushing. The sinusoidal 

trajectory is smooth and contains different pushing velocities over time and is therefore a suitable choice for 
gathering the data to train the NN and optimize the network weights to a better approximate in (9). 

The weight matricesof the NN are tuned in two manners: i) off-line back-propagation training [14] 
and ii) dynamic learning during pushing by using (10).  The former is known as supervised learning (requires 
training data) or static NN, whereas the latter is called unsupervised learning or dynamic NN. The dynamic 
NN-based controller is the application of the control law in (6), which is designed to ensure tracking and 
UUB stability in the Lyapunov sense.  

Three different control systems are used for automated sequential pushing: a linear conventional PD 
controller, a static NN-based non-adaptive controller, and, the proposed dynamic NN-based adaptive 
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controller.  The block diagrams describing the structure of each of these three controllers are provided in 
Figure 3. 
5.1. Artificial Neural Network Structure 

Equation (2) identifies six distinct variables that determine the magnitude of the micro forces at any 
given instance. These parameters, forming the input vector to the NN, are listed here. 

- A: Surface area of the object at the interface with the substrate 
- q: Current Position of the micro Object 
- Fa: Amount of force being applied on the object 
ሶݍ - :Velocity that the object is travelling at 
- RH: Relative humidity  
- T: Temperature of the enclosure 

 
 

Table 1. NN size and structure 
Number of inputs 6 
Neurons in hidden layer 10 
Number of outputs 1 
Number of training data sets 2550 
Number of testing data sets 500 

 
 
The proposed two layerfeed forward NN model in (9) outputs the approximate values of the 

nonlinear micro forces described in (2). Table 1 lists the parameters that define the structure and size of the 
NN used in the sequential micro object pushing experiments. These parameters are obtained through a trial-
and-error process [15].  

 
5.2. Tuning NN Weights 

A series of open-loop pushing operation are conducted at the relative humidity (RH) of %45 and 
temperature of 40o Celsius to identify the key characteristics of the micro forces. 3050 data sets are extracted 
from these experiments. 2550 of these data sets are used to train the NN and the remaining 500 are utilized to 
test the NN, prior to integrating it into the closed-loop control system shown in Figure 3(c). 
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Figure 3. Sequential micro object positioning controllers with different strategies 
 

The micro objects and the ambient conditions selected in automated sequential pushing differ from 
those employed in characterization experiments to prepare training data sets. Consequently, the resulting 
micro forces have considerably different magnitudes. Nevertheless, the proposed adaptive NN, as 
demonstrated in the following sections, is capable of adjusting its weights in real time under varying 
operating conditions by applying the proposed weight tuning algorithm in (10). 

Several micromanipulation cycles must be run, until the adaptive controller has effectively adjusted 
its weight to the new operating conditions. After each of these automated sequential micromanipulation 
cycles are complete, the program outputs an updated W matrix which is a modified version of the original 
matrix obtained during the static NN training.  For the next run of the automated micromanipulation, this new 
matrix is fed into the program, replacing the previous one as its initial W matrix. This ensures that the 
program always uses the most accurate data during the micromanipulation process, and, therefore, guarantees 
continuous learning.  

 
 

6. RESULTS 
In this section, the results of sequentially pushing three objects are provided. The objects are 

initially positioned according to  
Figure 2, and are pushed along the desired sinusoidal trajectory. The sequential micro object 

pushing is repeated with three different controllers. 
a) Conventional PD controller in Figure 3(a) 
b) PD controller, augmented with static NN in Figure 3(b), and trained as described in Section 0 
c) The proposed adaptive NN-based controller in Figure 3(c) with weight updates according to (10). 

In total, seven runs of automated sequential pushing of three micro objects are carried out. The first 
experiment is conducted by using PD controller for positioning. The second run is performed by adding the 
static NN to the PD controller.  

The experiment is continued by conducting 5 additional cycles of sequential pushing in which the W 
matrix of the NN is dynamically updated through the experiment according to (10). The performance of the 
control system in each case is reported in the following sections. 

The automated pushing experiments are carried out when the chamber is at the relative humidity 
(RH) of %52 and temperature is measured 32oCelsius.  

 
a. Sequential Micromanipulation Using the PD Controller 

Figure 4 illustrates the results of the automated sequential pushing of the three micro objects on a 
silicon substrate by using conventional PD controller.  

A stick-slip characteristic is almost always present at the start of the pushing as is clearly seen in the 
plots. After the pushing has commenced, the micro objects frequently slow down and might completely cease 
depending on the characteristics of the surfaces. For example, the displacement curve for the third object hits 
a horizontal line for a period of time on several occasions during the manipulation, demonstrating astick-slip 
behaviour of the object. In the case of the second object, the displacement curve suggests that the object 
slows down at two separate time instances throughout the pushing process.  In contrast, the first object almost 
smoothly follows the desired trajectory beyond the initial stick-slip phenomenon. For this object, the static 
error at the end position can be brought to zero if the PD controller is augmented by an integral component. 

 

 
Figure 4. Actual trajectories of the micro objects in sequential micromanipulation by PD controller (Run#1) 
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The plots in Figure 4 verify that the PD controller is incapable of compensating for the non-linear 

micro forces during the pushing. It can also be inferred that, when the object being pushed exhibits a varying 
stick-slip behavior throughout the pushing process, using a PID controller will not cancel the trajectory error 
effectively.  
 
b. Sequential Micromanipulation Using PD Controller Augmented with Static NN 

The sequential micromanipulation of the same three objects, along the same path is repeated by 
augmenting a NN to compensate for the nonlinear micro forces during the pushing process. The NN is 
trained according to the procedure described in Section 0.  In Figure 5 the performance of this control system 
is demonstrated.  

Adding the static NN does not produce any noticeable improvement of the overall performance of 
the automated sequential micromanipulation in Figure 5. This stems from the fact that the data used to train 
the NN does not truly represent the conditions under which the manipulation process takes place. The 
ambient condition in this run of the experiment differs from that of the training data sets. No micro forces 
characterization is performed on these specific micro objects used in the experiment in order to train the NN. 
This strategy is chosen to demonstrate the limitation of a non-adaptive control system for such 
micromanipulation where the governing forces are highly sensitive to any changes in the surface and ambient 
conditions. 

 

 
Figure 5. Actual trajectories of the micro objects in sequential micromanipulation by static NN-based 

controller (Run#2) 
 
 

c. Sequential Micromanipulation Using Proposed Adaptive NN-based Controller 
The next five cycles of the automated sequential pushing are carried out by using the adaptive 

control system in which the W matrix is updated during the process according to (10) in the manner discussed 
in Section 0. Figure 6 represents the trajectories obtained in the second cycle of the experiment with the 
proposed adaptive NN-based controller. From these plots, it is evident that the controller is effectively 
adapting its parameter, progressively leading to an accurate positioning of the micro objects, based on the 
desired predefined trajectory.  

 

 
Figure 6. Actual trajectories of the micro objects in sequential micromanipulation by adaptive NN-based 

controller (Run#4) 
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To fine tune the controller parameters, the learning rate is decreased by half after the third cycle of 
the sequential micromanipulation is complete. Lowering the learning rate parameter implies taking smaller 
steps toward the “near” optimal values of the W matrix weights, thus, avoiding the problem of over tuning 
commonly encountered if the learning rate is larger than what is required after several epochs of training.   

Fine tuning the adaptive controller results in an even more superior positioning of the micro objects. 
This can be seen from the plots in Figure 7. The three objects very closely follow the desired path.   

 

 
Figure 7. Actual trajectories of the micro objects in the sequential micromanipulation by adaptive NN-based 

controller (Run#7) 
 
 
An example of the configuration of the micro objects before and after the automated sequential 

pushing is illustrated in Figure 8. As seen in this figure, the surface of the silicon substrate is not perfectly 
polished and contains a number of scratches. Despite this, the proposed adaptive controller learns how to 
correctly compensate for the micro forces at the different places on this substrate. The learning for adapting 
to various characteristics of the surface asperities is facilitated by choosing the “position” of the object as a 
varying parameter in the input vector of the adaptive NN.  
 
 

 
 

 

Figure 8. Position of micro objects before (left) and after (right) automated sequential pushing experiment 
(Note: the two pictures are taken from different experiments) 

 
 
7. NUMERICAL ANALYSIS OF THE RESULTS  

The performance of the control system is evaluated by using the Root Mean Square (RMS) of the 
errors over the course of the automated sequential micromanipulation. In sequential micro pushing, the 
average RMS error is calculated as follows: 
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Where 



n

k
kRMS e

n
E

i
1

21
Eୖ୑ୗ౟is the RMS for each individual pushing operation in the experiment of 

sequential pushing of the three objects. The results of these calculations are summarized in Table 2. Figure 9 
compares the overall performance of the controller by plotting the average RMS error calculated in Table 2 
for different control approaches implemented in this paper.  
 
 

Table 2. Average RMS trajectory errors in automated sequential pushing experiment by different controller 
systems 

Run index Controller RMS1 RMS2 RMS3 Average RMS 
Run #1 PD only 54.35 121.84 79.01 85 
Run #2 PD + static NN 66 75.93 53.50 65.14 
Run #3 

PD + dynamic NN 

27.24 22.11 25.23 24.86 
Run #4 15.67 14.32 16.30 15.43 
Run #5 14.24 14.56 18.21 15.67 
Run #6 5.23 7.22 7.24 6.56 
Run #7 4.89 5.65 7.91 6.15 

 
 
After several tests are completed and no significant change of the parameters affecting the micro 

forces are observed, the RMS curve typically hit a plateau at which the controller is no longer capable of 
learning more. At this point, the W matrix values undergo little or no updates, and the proposed adaptive NN 
is deemed to be trained satisfactorily. Any further decrease in the value of the learning rate has no significant 
effect in the average RMS. In this experiment, the adaptive controller performance does not improve beyond 
the fourth training cycle of the completed automated sequential pushing with the dynamic NN (Experiment 
Run#6). 

 
 

8. DISCUSSION AND CONCLUSION 
In this paper, the automated sequential precise positioning of multiple micro objects is successfully 

realized by means of a novel control strategy utilizing an adaptive neural network-based controller. For the 
first time, the entire micromanipulation path is controlled by accurately compensating for the dominant micro 
forces involved.  

Promising results, reported in the automated sequential manipulation, can promote the applicability 
of an adaptive NN in a precise manipulation in the micro scale under varying environmental conditions. In 
serial automated microassembly lines, the dominant resisting micro forces distort the compliant 
micromanipulator tips, impairing the accuracy of the automated positioning. Micromanipulator systems with 
stiff arms do not have this issue; however, they have a very large physical footprint compared to that of the 
micro objects. This imposes a restriction on installing multiple manipulators to perform multi-degree-of-
freedom (DOF) assembly tasks. The proposed compensation mechanism for micro forces enables the use of 
multiple miniaturized micromanipulators for the automated serial assembly of 3-D micro systems. 
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Figure 9. RMS trajectory errors at different runs of the automated sequential pushing experiments 

 
In this work, a slim micro cantilever with a high aspect ratio was employed. The deflection of the 

cantilever under a lateral load in the experiments closely simulated the effect of dominant micro forces on 
compliant microactuators. For future work, the proposed adaptive controller will be implemented to 
command multi DOF microactuatorswith compliant arms for accurately positioning micro objects. 

The results reveal that pushing micro objects with a flat surface area on a flat substrate is a very 
slow process, when compared to manipulation of objects in macro scale. Future works also includeexploring 
innovative solutions to overcome the limitation, such as the selection of appropriate materials, roughening the 
surfaces, and conducting the operation at a specific ambient temperature, relative humidity, and air pressure. 
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