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 This paper presents arobust Q-learning method for path planningin a 
dynamic environment. The method consists of three steps: first, a regime-
switching Markov decision process (RSMDP) is formed to present the 
dynamic environment; second a probabilistic roadmap (PRM) is constructed, 
integrated with the RSMDP and stored as a graph whose nodes correspond to 
a collision-free world state for the robot; and third, an onlineQ-learning 
method with dynamic stepsize, which facilitates robust convergence of the 
Q-value iteration, is integrated with the PRM to determine an optimal path 
for reaching the goal. In this manner, the robot is able to use past experience 
for improving its performance in avoiding not only static obstacles but also 
moving obstacles, without knowing the nature of the obstacle motion. The 
use ofregime switching in the avoidance of obstacles with unknown motion 
is particularly innovative.  The developed approach is applied to a homecare 
robot in computer simulation. The results show that the online path planner 
with Q-learning is able torapidly and successfully converge to the correct 
path.

Keyword: 

Markov decision process 
Online Q-learning 
Optimal path planning 
Probabilistic roadmap 
Regime switching 
Unknown dynamic obstacles 

Copyright © 2014 Institute of Advanced Engineering and Science. 
All rights reserved. 

Corresponding Author: 

Yunfei Zhang,  
Industrial Automation Laboratory, Department of Mechanical Engineering,  
The University of British Columbia,Vancouver, BC, V6T 1Z4, Canada 
Email: yfzhang@mech.ubc.ca 

 
 
1. INTRODUCTION 

During the past decade, researchers in robotics have increasingly redirected their attention 
fromtraditional industrial robots operating in structured or stationary environments to the area of service 
robotics.In this regard, homecare robotics for the elderly and the disabledhas a special significance for its 
contribution to improving the quality of life and reducing the cost and caregiver burden. 

Path planning is a critical function for a homecare robot, which moves in anenvironment of 
unknown dynamics. In this function, the path of the navigating robot from the start location to the goal 
location is planned according some criteria (e.g., shortest path, quickest path, path of minimum energy) while 
avoiding collisions with static and moving obstacles, and subject to some constraints (e.g., robot capabilities 
with respect to its possible movements). However, path planning becomes more complex in the present 
application since the home environment is dynamic and unstructured due to moving objects such as humans 
and pets and their actions (e.g., rearrangement of furniture) [1]-[3]. Therefore, it is important that such robots 
learn how to deal with dynamic environments so that when they repeat those or similar tasks, advantage can 
be taken of the prior experience. 

Sampling-based methods such as Probabilistic Roadmap [4]-[6] and Rapidly-exploring Random 
Trees (RRT) [4], [7] became very popular since the nineties. These algorithms have proved to be very 
effective for path planning in high-dimension since they rely on a collision-checking module instead of 
explicit representation of the environment; however, convergence to optimal solutions with probability one 
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cannot be guaranteed. Recently [7], a series of variants to the sampling-based methods (PRM*, RRT*) have 
been proposed to provide probabilistic completeness. This means the probability of discovering the optimal 
solution converges to one as the sampled number of states increases to infinity, if a solution exists for a 
particular plan. All these methods do not explicitly consider moving obstacles when asymptotically 
converging to the optimal path. 

In practical applications, however, most challenges in path planning come from factors of 
uncertainty in dynamic environments such as varying environment and unknown moving obstacles. Inspired 
by the consideration of static and moving obstacle separately and the configuration-time state space, Van den 
Berg proposed a hybrid approach which first constructs a path using PRM in the configuration-time state 
space based on the stationary obstacles in the environment, and subsequently plans a collision-free path from 
the original path by taking into account the moving obstacles, which are modeled as time discs [8], [9]. A 
particular advantage of his approach is that it does not need to exactly know the specific movements of the 
obstacles, such as speed and direction, and the planner is able to generate a path on-line while taking into 
account changes in the environment during the period of deliberation. However, his approach also has some 
disadvantages. One is the assumption that the maximum speed of obstacle motion must be less than that of 
the robot. Another is that the safety buffer of the time disc module sacrifices part of the collision-free space. 
Furthermore, the approach does not make use of the previous planning experience, which can help to reduce 
computational burden. 

The present paper presents a new path planning approach, which incorporatesonline reinforcement 
learning integrated with RSMDP (regime-switching Markov Decision Process) [10] for a mobile robot 
moving in a dynamic environment. The considered dynamic environment is unstructured and has uncertainty 
due to lack of knowledge of the behavior of moving obstacles. Hence it is rather difficult to model the 
surrounding environment and the unpredictable movements of the obstacles. To resolve this problem, a novel 
framework called the RSMDP scheme is introduced to represent the dynamic environment. In addition, an 
online reinforcement learning approach is integrated into the RSMDP scheme to resolve the uncertainty in a 
model-free environment, and PRM (Probabilistic Roadmap)—a sample-based method—is used to resolve the 
“curse of dimensionality” that arises with reinforcement learning when facing a continuous state and action 
space. The main contributions of the present paper, in the context of the related previous work ([11], [12]), 
are as follows. First, unlike [11] and [12], which consider only static obstacles, the present path planner is 
able to return a globally optimal path in the presence of unknown moving obstacles, with regard to balancing 
the shortest path and obstacle avoidance. Second, through PRM, both state space and control space can be 
constrained to a low-dimensional finite space. Third, and most importantly, the reinforcement learning is 
used in an online formation, using the concept of regime-switching [13],[14] to represent the changing 
environment caused by moving obstacles, where value iteration is robust to parameter changes. This appears 
to be the first application of regime switching to solve path planning problems in dynamic and unstructured 
environment. 

The remainder of this paper is organized as follows: after introducing the related work in Section 1, 
Section 2 formally defines the problem of study. Section 3 briefly introduces the concept of RSMDP and the 
methods of reinforcement learning and PRM. It rationalizes the combination of these two methods for the 
application in online path planning. In addition, a path planner is proposed for a mobile robot operating in a 
dynamic environment, which uses the“experience base” built on-line through robust Q-learning, for 
generating the optimal path. The developed approach is implemented in a simulated homecare robot. The 
results presented in Section 4 validate the developed hybrid planner.  In Section 5, conclusions are drawn for 
the present work 
 
 
2. PROBLEM DESCRIPTION 

Consider an autonomous robot that is navigating to a goal location through a complex, dynamic, and 
unstructured environment in which there are stationary and moving obstacles. The uncertainty comes from 
the fact thatthe movements of the obstacles cannot be predicted or estimated in advance. It is presumed that 
the changes of the environment and of the stationary obstacles can be completely known through a global 
camera. A local camera and laser sensor are able to localize the robot. A moving obstacle may be considered 
as a static obstacle at the time when it is detected by the sensors of the robotic system, but will not be taken 
into account during planning path until it is detected again by the sensors. In practice, the autonomous robot 
is defined in a 6-dimensional (6D) configuration space and in a 2-dimensional (2D) workspace using: three 

mobile coordinates, 1, ,x y  and three manipulator coordinates ߠଶ, ,ଷߠ  ସ. So, the entire configuration spaceߠ

has 6 dimensions ݏ ൌ ሾݔ, ,ݕ ,ଵߠ ,ଶߠ ,ଷߠ  ,ସሿ. Consequently the resulting robot system is a high-dimensional oneߠ
which will suffer from the curse of dimensionality. Hence, a sample-based algorithm is used to approximate 



IJRA ISSN: 2089-4856  

RSMDP-based Robust Q-learning for Optimal Path Planning in a Dynamic Environment (Yunfei Zhang) 

3

the extensive state and action space. In the present paper, for simplicity of description and simulation, a 2D 
configuration space [x, y] is used. Here x and y represent the two Cartesian axes of the 2D workspace and 
also the position of the mobile robot in the workspace. A point mass is used to represent the mobile robot 
instead of considering its kinematic model. The PRM, which is a sample-based method, is used in the present 
approach, which can be extended to RRT and its variants as well, if a kinematic modelof the robot is 
integrated. The aim of the present work is find an optimal path plan for a mobile that takes into account not 
only the shortest length but also the capability of obstacle avoidance under uncertain conditions. 
 
 
3. METHODOLOGY 

 
3.1. Regime-Switching Markov Decision Process (RSMDP) 

The scenario of path planning problem described in Section 2 can be formulated as an MDP because 
it has the Markov property that the future state depends only the current state and has no dependence on the 
past states. An MDP is defined by a tuple with five elements: M = (S,A,P,R,TC) where S is a set of states, A is 
a set of actions depending on X, 0( , ) :P S S A       is a transition probability function that satisfies 

'
( ' , ) 1

s S
P s s a


 for all s S and a A ,  ( , , ) :R S A S      is an immediate cost function for all 

s S and a A ,and :TC S  is a terminal cost function denoting the sign of an end of an MDP; an 
absorbing state with cost zero is usually used in a path planning problem . Whether or not a control policy 

: S A  of one MDP is a good process is determined by its corresponding expected value function, 
which usually can be obtained by solving the Bellman equation given by: 

 

1 1
0 0

( ) ( ) ( ) ( ( ))i i
t t i t t t i t t t

i i

V s E r s E r r s E r V s 
     

 

   
 

     
 

(1) 

 
where [0,1]  is the step size that corresponds to the iteration rate of the Bellman equation, and

1 ( , )t t ts s a  is the transition function according to 0( , ) :P S S A       . The goal is to find an optimal 

policy ( ) arg max ( )as V s   that minimizes (or maximizes, depending on specific definition of the cost 

function R) the expected value (1) for every initial state 0s . In this paper a sample-based method is applied to 

overcome the curse of dimensionality. Specifically, the finite horizon discount version of MDP where i   , 
is used for this purpose. 

Next regime-switching is integrated into MDP to represent a dynamic environment.  
Fromexperience it is known that a home environment can change between static and dynamic states. A 
regime   is defined as the time/step period between the last changes and the current changes. Therefore, the 

state, action and the transition probability of MDP stay the same in one regime and vary from one regime to 
the next.  Consider a countable collection  of changing regimes of cost-minimizing MDP problems. 
Associate each regime 

k with one period of static MDP to be one regime-switching MDP (RSMDP) 

( , , , , )
k k k k k k

M S A P R TC      , where k N denotes the index of each discrete static time/step period of the 

changing environment. Consequently, the goal becomes finding the optimal policy 
( ) arg max ( )

k kas V s
   

 
where ( )

k
V s


is given by: 

 

, , , , , , , 1 , , , , 1
0 0

( ) ( ) ( ) ( ( ))
k k k k k k k k k k k k k k k k k

i i
t t i t t t i t t t

i i

V s E r s E r r s E r V s 
                      

 

   
 

       (2) 

 

It is seen that the optimal policy ( )
k

s
 varies from one regime to another. Hence in RSMDP, the 

problem of tracking the optimal policy ( )
k

s
 corresponding to each regime k is considered. The only 

assumptions that is needed for k
 
is as follow: 

Assumption 1:  For each regime , [ ] sup [ ]k iE T E t   , whereT represents the duration of regime k
and it represents the duration of each iteration in the Bellman equation. 
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Assumption 1 implies that the requirement of successfully converging to ( )
k

s
 is that the regime does not 

change too often when compared with the time used for each iteration step in (2). This is satisfied the 
practical scenario of path planning that is considered in the present work.  In the following subsection, the 
way to express the path planning problem by incorporating PRM into RSMDP is described. 
 
3.2. Probabilistic Roadmap for RSMDP 

A home environment is arguably unstructured. For example, furniture may be cluttered and 
unorganized, and it is difficult to determine the structure of such furniture using sensors. Furthermore, this 
will impose a huge computational burden when building an accurate model to represent the environment. 
Sampling-based methods have adequately resolved the problem of computational burden, because these 
methods rely on a collision-checking module instead of using an explicit representation of the environment. 
Probabilistic Roadmap (PRM) and its variants [5], [6], provide effective methods of path planning that are 
sampling-based. 

PRM is a network of simple curve segments, or arcs, that meet at nodes.  Each node corresponds to 
a configuration in the configuration space(C-space). Each arc between two nodes corresponds to a collision 
free path between two configurations.  It comprises a preprocessing phase and a query phase. In the 

following, let C denote the robot’s C-space, fC the free C-space, Nthe node set, and E the edge set. First, 

initiate a graph R = (N, E) that is empty. The preprocessing phase constructs the free C-space, giving the 
global picture, as shown in Figure 1(a). The query phase, shown in Figure 1(b), generates an optimal global 
collision-free path (bold line in Figure 1(b)) by connecting the start and goal nodes to the roadmap, where 
heuristic methods are usually used (Q-learning will be used in the present paper). Details are found in [5] and 
[6]. 

As defined, state set 
k

S in RSMDP corresponds to node set N in PRM, and action set 
k

A
corresponds to edge set E. If the system is continuous, index t denotes the time interval; otherwise index t 
denotes the step interval. In this papertis considered as the step interval without losing generality since the 
dynamic environment is formulated as a discrete RSMDP and each step is very short relative to the entire C-
space. Therefore, the action subset

k k
A A   associated with a state ,k kis S  at step i under regime k , is 

countable and corresponds to those edges connecting to the associated node in PRM. Hence which action 
should be chosen at a certain state in the learning process is governed by a stochastic behavior due to the 
unpredictable motion of the obstacles, although the available actions are countable. The final goal of the 
present work is to find the optimal policy ( )

k
s

  iteratively after theQ-learning process, as described in 

subsection 3.3. Regime k will not be changed unless the moving obstacles affect the current ( )
k

s
 . Figure 

2 shows two common scenarios of regime change where one moving obstacle is detected using some distance 
threshold. As it blocks the current optimal path, the transition probability (although not known in advance) of 
the corresponding states and actions will be changed so that the current regime k will be changed into next 

regime 1k  . Then the Q-learning process will choose another available path according to the new regime. 

Sometimes,once the chosen path is blockedin the current regime, there may notbe available path to choose 
from due to lack of sampled nodes in PRM. For example in Figure 2(c), an obstacle moves to block all 
possible paths to the goal node and stays there for a long time. Here again, PRM is imported to build a local 
roadmap around the robot and the moving obstacle, in order to determine a feasible path. In particular, as 
shown in Figure 2(d), first a semicircular local region is built centered on the location of the previous state of 
the blocked edge. Its radius is calculated from the distance between the locations of two states connected by 
the same blocked edge. Then, a roadmap is generated within this semicircle by the same PRM method as 
before.  Clearly the extra sampled nodes generated by the local roadmap will change the structure of the 
current PRM and consequently change the current regime k into the next regime 1k  . 
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(a)                                        (b) 

 
Figure 1. The PRM process in the C-space. (a) Preprocessing stage; (b) Query state (Polygons represent static 
and moving obstacles, and the blank space represents the collision-free C-space.  In order to represent a robot 
as a point as it moves on the ground, the standard practice is to expand the obstacles corresponding to the size 
reduction of the robot, as shown by bold sideline of polygons. A uniformly random sample method is used to 
construct deterministic nodes in the free C-space. Then, such nodes are collision-free nodes. The roadmap is 

constructed using the collision-free nodes). 
 
 

 
(a)               (b) 

 
(c)                                        (d) 

 
Figure 2. Local roadmap generation: (a)an original path generated by PRM;(b) an alternative pathselected if 

the original path is blocked; (c)(d)if no alternative path available, a semicircle is used to a generate new 
collision-free path. 

 
 
3.3. Path Planner with Online Q-learning  

PRM works well in a static environment, but it cannot adapt to a dynamic environment where there 
are moving obstacles. Re-planning might be an intuitive alternative, in the presence of moving obstacles, but 
it would be impractical in general. For example, a moving obstacle might rapidly change its position after the 
path planner re-calculates a path based on the previous sensor information of the moving obstacle, and that 
new position of the moving obstacle might still block the new path. Considering such problems, the present 
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paper incorporatesthe reinforcement learning method, Q-learning, into the query phase of the PRM in the 
RSMDP formulation. In this manner, when the optimal path is blocked by a moving obstacle, the path 
planner is able to quickly choose another optimal path, using the previous experience about the map, as 
determined by the Qfunction value. 
In the 1990s reinforcement learning (RL) was proposed to solve MDP problems [4]. In RL, an agent learns 
its behavior through trial-and-error interactions with a dynamic environment, while receiving rewards for 
good actions and penalties for bad actions. Specifically, the agent performs an action ta  in state ts  and 

receives a real-valued reward ( , )t t tr r s a R  from the environment. Through this process, the agent learns 

anoptimal policy ( ) arg max ( )as V s   where ( )V s is equal to 1, which maps the state set S into the action 

set A, and arrives at its next state 1 ( , )t t ts s a  . The policy should be able to maximize the cumulative 

reward according to ( )V s .  

Q-learning is a popular version of off-policy reinforcement learning which, regardless of the policy 
being followed, always estimates the optimal Q-function that is defined as ( , ) :t tQ s a S A  .Q-learning 

has two main advantages when compared with other approaches of reinforcement learning. First, it does not 
require a model of the environment, which is advantageous when dealing with an unknown environment. For 
example, in an unknown environment ( , )t t tr r s a , 1 ( , )t t ts s a  are nondeterministic functions. Then, r and 

sare initiated arbitrarily and the algorithm will eventually converge to the optimal *( , )Q s a  value in view of 

its mathematical basis.  Second, it is able to update the estimates using partially learned estimates without 
waiting for completing the entire episode, which means it bootstraps.  These aspects are discussed under 
MDP formulation. The core algorithm of Q-learning in RSMDP is given by:  

 

, , 1 1( , ) ( , ) [ ( , ) max ( , ) ( , )]
k k k k k k kt t t t t t t t a t t t tQ s a Q s a r s a Q s a Q s a            

 
(3) 

 
The optimal action policy *

k is given by: 

 
* *( ) arg max ( , )

k kas Q s a    (4) 

 
There are two conditions that should be satisfied to guarantee the convergence ofQ-learning to optimal

* ( , )
k

Q s a with probability one [28]. 

Condition 1: All the state-action pairs ( , )t tQ s a are visited infinitely often as the number of transitions 

approaches infinity. 

Condition 2: The stepsize t should satisfy 2
, , ,

0 0

0, , ,
k k kt t t

t t

k    
 

 

       . 

Condition 1 is called exploration, which requires thatQ-learning has nonzero probability of choosing any 
action when it also needs to exploit its current knowledge in order to perform well by selecting greedy 
actions in the current Q-function. A popular method to balance exploration with exploitation is the

greedy  approach: 

 
,

arg max ( , ), 1
k

k

k

t
a t t k

an uniform random action in A with probability
a

a Q s a with probability








     

(5) 

 
Condition 2 implies that the stepsize should meet the requirement ,

0
lim 0

k t
t


 . There is also a tradeoff 

problem when choosing ,k t in regime k . In order forQ-learningto converge to optimal * ( , )
k

Q s a quickly, 

the stepsize ,k t has to be large; however, the stepsize ,k t should be small in order to minimize the 

magnitude of the fluctuations of the Q-function within a given regime. In traditional Q-learning, this tradeoff 
does not considerably affect the system since the speed is usually adequate to solve related problems ina 
static situation. However, in obstacle avoidance inthe RSMDP framework, the way how Q-function 
converges to the optimal value greatly affects the robot system.A large ,k t is expected to produce a fast 

convergence speed, butthe high-magnitude fluctuationscaused by small ,k t will lead to incorrect optimal Q-
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function, possibly causing the robot to collide with obstacles. At high speed, safety should be given more 
attention. The strategy to achieve these performance requirements isto make the Q-function iterationprocess 
robust to ,k t . Then, accurate optimal value can be achieved at satisfactory speed. Therefore, In the current 

work,by setting and resetting , maxk

t
t  ,the path planner always selects the largest possible stepsize for the 

current regime and makes it converge to zero within the same regime. But the step size is resetto the largest 
possible value again when the regime changes. In this way, ,k t  is able to eventually converge to zero, but it 

is set to a large value in the beginning of the iteration so thatthe Q-function iterationis robust to the changes 
in ,k t ,whilehaving sufficient speed of converging to the new optimal Q-function * ( , )

k
Q s a  to adapt to the 

new regime 1k  . When to reset ,k t  is critical in the present approach. In view of Assumption 1in 

subsection3.3, the changing frequency of the dynamic environment should not be very highalthough the 
moving obstacle may always make the environment to change. To this end, it is assumed that the regime is 
changed only when the current path has been blocked by obstacles that enter the robot’s dangerous area as 
defined by some threshold, rather than when moving obstacles change the PRM. 
The online path planner withQ-learning, which is used in the present paper, chooses the optimal path 
according to the maximum Q value with respect to each state-action pair. TheQ value of each state-action 
pair is obtained by taking into account both the shortest path and obstacle avoidance in the cost function 

, ( , )
k t t tr s a defined by: 

 

, 1( , ) ( , ) (1 ) ( )
k t t t t t tr s a f s s h s    

 
(6) 

 

Here 1 1( , ) ,t t t tf s s s s
  denotes a distance function defined by  norm,  is the weighting parameter used 

to balance 1( , )t tf s s  and ( )th s , and ( )th s denotes the reward function according to moving obstacles. 

Once an optimal path is obtained in the current regime, the robot begins to move. When a moving obstacle 
blocks the recurrent optimal path, the stepsize resetting will be made and the path planner will chooses 
another available optimal path by quickly converging to the new optimal policy. It is seen that although the 
stepsize changes every time when the regime changes, the learning rate within the new regime will be faster 
than in the previous regimes since Q-value for each state-action pair is saved as the knowledge for the new 
regime. That is the reason why the present path planner is able to adapt to a dynamic environment. 

 
 
4. SIMULATION STUDIES 

This section presents simulation studies to validate the online path planner developed in the present 
paper.  The system is simulated using Microsoft Visual Studio 2008 and open-source software OpenCV. 
Figure 3 shows an image of a simulated environment obtained from a presumed global camera before the 
mobile robot is started. The white rectangles represent static obstacles and the white ellipse representsa 
moving obstacle. The world state is made up of the pixel coordinates of the nodes of the roadmap within a 
640×480 image plane, which is represented as  ( , )s x y  where x = 0, 1, … , 640; y =0 ,1, 2 …, 480. After 

obtaining the collision-free states, the starting point and the goal point of the robot are set at fixed positions 
indicated by arrows. These two points are added into the collision-free roadmap in the same way the roadmap 
is generated, except that loop connection is used instead of incremental connection in order to provide more 
possibilities of path connecting between the starting point and the goal point. The thin lines represent 
available paths and the thicker lines represent optimal paths obtained during the learning process. The 
number close to each edge is the Q value for each state-action pair corresponding to the edge. Euclidian 
distance is used by setting 2, 10 / (640 480)     in (6) and setting the reward function as follows: 

 
= 0; when the robot reaches the gaol

( ) = -10; when the robot touches the obstacle

= -5;in any other situation.
t

R

h s R

R


 



 (7) 
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Figure 3. Simulated environment for the mobile robot in a 640×480 image plane, in a learning process. 
 

max 0.8 

max 0.5 

max 0.2 

 
 

Figure 4. History of Q-valuewith max 0.8,0.5,0.2  and 100 sampled points in PRM. 
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Figure 5. Performance of traditional Q-learning and Robust Q-learning with max 0.98  . 

 
 

The first simulation (shown in Figure 4) tests how theQ value converges to its optimal value in 
terms of possible maximum beginning value ofthe stepsize when using the strategy , maxk

t
t  . The Q value 

of the edge close to the goal point is chosen under three beginning step-size values, max 0.8,0.5,0.2  (shown 

by the dotted line, star line and triangle line,respectively, in the figure). It is seen that the smallest value

max 0.2  can bring up less intense fluctuations, which is in accordance with Condition 2 in subsection3.3. 

Nevertheless, it is seen that the optimal Q-value and the learning rate do not change appreciably for different 
maximum beginning values of the stepsize max . In this sense, the Q-value iteration process is robust for 

choosing max .Specifically, max can be chosen as high as possible in order to obtain the fastest possible 

learning rate or the fastest convergence speed. Figure 5 shows the performance of the iteration process when 

max is set at 0.98 for robust Q-learningand traditional Q-learning. In Figure 5 it is seen that both robust Q-

learning(dotted line) and traditional Q-learning (solid line) are able tosuccessfully converge to a new optimal 
Q-value when the regime changes from regime 1 into regime 2, caused by moving obstacles. Although 
tranditional Q-leanring is faster than robust Q-learning, robust Q-learning converges to the optimal Q-value 
very smoothly comparing with the traditional Q-learning. This propertywill help the robot to choose a more 
accurateoptimal action if the optimal Q-values of the actions with respect to one state intersect with each 
other when the regime changes quickly and there is not enough time for the Q-value iteration to converge to 
the optimal value.Therefore, the safety can be ganranteed as much as possible at the cost of low speed of 
convergence. This low speed is still the fastest one in such conditions and can be achieved using a modern 
computer. 
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(a) (b)

(c) (d)

(e) (f)  
 

Figure 6. Obstacle avoidance in dynamic environment. (a), (c), (e) original optimal path in regime 1; (b), (d), 
(f) scenarios for regime 2 where moving obstacle is blocking the current path, hence choose another optimal 
path. The top row of the pictures corresponds to 100 sampled points in PRM, center row corresponds to 400 

sampled points, and the bottom row corresponds to 600 sampled points. 
 
 

The second simulation (shown in Figure 6) verifies that the present algorithm is able to successfully 
avoid both static and moving obstacles under the RSMDP and robust Q-learning framework. Keyboard 
controller is used to control the moving obstacle and make it move to block the obtained optimal path. With 
the cost function as defined in (6) and (7), the simulated robot reaches the goal point by choosing the shortest 
available path and avoiding obstacles, which is considered as regime 1. When the robot detects that the 
moving obstacle is blocking its current optimal path, it quickly finds another optimal path by using the 
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learning experience, which is considered as regime 2. It is noted that although increasing the number of PRM 
nodes will generate more available paths, the time spent to learn a new optimal path will also increase. 
Hence, there is a tradeoff between the number of nodes and the time taken to avoid obstacles. In the present 
case, having 400 sampled nodes can provide the fastest speed to adapt to a dynamic environment.  
The online robust Q-learning method of the present paper is a behavior-based decision-making process. The 
robot continuously observes the world states and selects the action having the optimal Q value among the 
possible actions in the current state, as given by the Q function. This is different from a traditional behavior-
based system where the rule base of behavior is designed entirely by a human expert in advance. The rule 
base of Q-learning is learned autonomously when the robot interacts with its environment during the training 
process. The curse of dimensionality is a serious challenge in this process because, in theory, an infinite 
number of iterations would be needed to guarantee convergence to the optimal value. The method proposed 
in the paper overcomes this problem by incorporating a PRM roadmap as the world state for the robot. The 
safety is another challenge, when dealing with rapidly moving obstacles in a dynamic environment. The 
robust Q-learning in the present paper guarantees smooth convergence for Q-value iteration so that 
arelatively accurate action is chosen when the regime changes.  

 
 

5. CONCLUSION 
This paper presented anonline robust Q-learning path planning method for a mobile robot in a 

dynamic environment with unpredictable moving obstacles. Dynamic stepsize strategy in online robust Q-
learning is central when using RSMDP to represent a dynamic environment. This strategy makes the Q-value 
iteration robust to the choice of maximum initial stepsize. PRM contributes to overcoming the curse of 
dimensionality which is a common problem in MDP and reinforcement learning. Simulation experiments 
presented in the paper showed that the developed path planner could rapidly and safely find an optimal path 
in a dynamic environment with both static and moving obstacles. The method presented in the paper can be 
directly extended to robots represented by kinematic models and in higher dimensions since a continuous 
space may be presented by an infinite discrete space.  
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