
International Journal of Robotics and Automation (IJRA)
Vol. 3, No. 1, March 2014, pp. 13 – 29
ISSN: 2089-4856 13

Global Tracking Control of Quadrotor VTOL Aircraft in
Three-Dimensional Space

K. D. Do
Department of Mechanical Engineering, Curtin University, Perth, WA 6845, Australia

Article Info

Article history:
Received Jul 3, 2013
Revised Dec 15, 2013
Accepted Jan 10, 2014

Keyword:
Global tracking
quadrotor aircraft
one-step ahead backstepping
Lyapunov’s direct method
exponential observers

ABSTRACT

This paper presents a method to design controllers that force a quadrotor vertical take-off
and landing (VTOL) aircraft to globally asymptotically track a reference trajectory in three-
dimensional space. Motivated by the vehicle’s steering practice, the roll and pitch angles
are considered as immediate controls plus the total thrust force provided by the aircraft’s
four rotors to control the position and yaw angle of the aircraft. The control design is
based on the newly introduced one-step ahead backstepping, the standard backstepping and
Lyapunov’s direct methods. A combination of Euler angles and unit-quaternion for the
attitude representation of the aircraft is used to obtain global tracking control results. The
paper also includes a design of observers that exponentially estimate the aircraft’s linear
velocity vector and disturbances. Simulations illustrate the results.
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1. INTRODUCTION
Quadrotor aircraft are attractive VTOL aerial vehicles for various military and civilian applications. A

quadrotor aircraft usually has a rigid cross frame equipped with two pairs of rotors. These two pairs of rotors ro-
tate in opposite direction in order to compensate the effect of the reactive torques. The flying mechanism of the
aircraft is explained as follows. The vertical (heave) motion is resulted by collectively increasing and decreasing the
speed of all four rotors. The pitch and roll motions are achieved by changing the speed of the front-rear pair and the
left-right pair of rotors, respectively. The yaw motion is realized by the different reactive torques between the two pairs
of the rotors. Finally, the horizontal (surge and sway) motions are resulted from the coupling of the roll, pitch and
vertical motions. There is no change in the direction of rotation of the rotors. The aforementioned flying mechanism
implies that the motions of the quadrotor aircraft are nonlinearly coupled. Nonlinearities come from the fact that the
equations describing the motions of the aircraft are nonlinear, see Subsection 2.1. for details. Moreover, the aircraft are
underactuated since there are only four independent control inputs (four rotors) while there are six degrees of freedom
(surge, sway, heave, roll, pitch, and yaw) to be controlled, see [?] for more details on controlling other underactuated
mechanical systems. The underactuated and nonlinear coupling features of the quadrotor aircraft result in difficulties
in controlling their motions.

Due to the aforementioned difficulties, controlling a VTOL aircraft was initially restricted in a vertical plane,
i.e., the horizontal (surge and sway), pitch and yaw motions were ignored. An approximate input-output linearization
approach was used in [?], [?], [?], [?], [?] to develop controllers for stabilization and output tracking/regulation of
a VTOL aircraft. In [?], by noting that the output at a fixed point with respect to the aircraft body (Huygens center
of oscillation) can be used, an interesting approach was introduced to design an output tracking controller. However,
the proposed controller was not defined in the whole space. Simple approaches were developed in [?], [?] to provide
global controllers for the stabilization and tracking control of a VTOL aircraft. A dynamic high-gain approach was
used in [?] to design a controller to force the VTOL aircraft to globally practically track a reference trajectory.

Since the quadrotor aircraft usually operate in three-dimensional (3D) space, controlling all of their six de-
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grees of freedom has recently attracted attention of researchers in the control and robotic communities. In comparison
with the two-dimensional (2D) case mentioned above, controlling the aircraft in 3D space has two main additional
challenges. The first one is that in the 2D case there are two independent control inputs while there are three outputs
desirable to be controlled. The 3D case has four independent control inputs and six outputs desirable to be con-
trolled. The second challenge is that there are singularities in the kinematic equations describing the motions of the
aircraft if the Euler angles are used to represent the orientation (attitude) of the aircraft. A combination of feedback
linearization [?], nested control design [?], and backstepping techniques [?] was proposed in [?], [?], [?] to design
a stabilization and tracking controller for a quadrotor aircraft in 3D space. However, the result was local due to the
use of Euler angles for representation of the quadrotor aircraft’s attitude. To overcome the singularities due to the
use of Euler angles for describing the aircraft’s attitude, the unit-quaternion [?] was used. To relax the underactuated
constraint of the quadrotor aircraft, several authors considered the attitude tracking problem and the position tracking
one separately. In [?] and [?], the attitude control problem for the quadrotor aircraft was addressed. Control of the
attitude is more straightforward than that of the position for the quadrotor aircraft because the dynamics of the attitude
of the aircraft are fully actuated while the position dynamics are underactuated.

Motivated by the work in [?], the position tracking problem for the quadrotor aircraft was recently considered
in [?] and [?]. In [?], the authors addressed the problem of position tracking for quadrotor aircraft without linear
velocity measurement where the unmeasured linear velocity was handled by a dynamical approach in [?]. In [?], the
position tracking problem for the aircraft subject to constant disturbances was solved. However, in both [?] and [?]
the attitude was not controlled. This is because the authors of [?] and [?] treated an underactuated quadrotor as an
over-actuated one in the position tracking problem to enable them to use an attitude extraction algorithm for extracting
a desired part of the attitude. This means that in [?] and [?] four independent control inputs were used to control three
outputs (position in 3D). Moreover, a serious problem without controlling the heading angle (a part of the attitude) is
that the quadrotor can rotate around the vertical axis, i.e., the zero dynamics of the heading angle can be unstable. This
problem was recognized in the field of controlling underactuated surface ships [?]. In contrast to the surface ships, the
quadrotor aircraft are symmetric in the horizontal plane. Therefore, it is impossible to use the aft heavy property to
prevent the quadrotor aircraft from rotating around the vertical axis with the position tracking control algorithms in [?]
and [?]. The above findings motivate the contributions of this paper on proposing a new method to design a global
tracking controller for the quadrotor aircraft. The paper’s contributions include three folds.

1. A combination of the Euler angles and the unit-quaternion is used for representation of the quadrotor aircraft’s
attitude in the equations of motion of the aircraft. This combination allows us to design the tracking controller
with a clear physical meaning, and to avoid singularities in the equations representing the aircraft’s attitude. As
such, the unit-quaternion is used for representation of the quadrotor aircraft’s attitude to avoid singularities and
the Euler angles are used to design the immediate controls that stabilize the position and yaw tracking errors.
These immediate controls are then represented back by the unit-quaternion to avoid singularities. Therefore, the
control design has a clear physical meaning and is straightforward to follow in the sense that the roll and pitch
angles are used in combination with the heave velocity to control the un-actuated degrees of freedom (sway
and surge). As such, the control algorithm in this paper controls both the position and the heading angle while
ensures boundedness of the roll and pitch angles. Therefore, the problem of the quadrotor rotating around the
vertical axis existing in [?] and [?] is avoided.

2. A new one-step ahead backstepping method is introduced. This method is used to design bounded immediate
controls for the roll and pitch angles and heave velocity of the aircraft to control its horizontal motions. The
one-step ahead backstepping method is applied to derive an explicit Lyapunov function, of which the derivative
is negative definite, to design a global tracking control law. This results in a global asymptotic and local expo-
nential stable closed loop system. Global asymptotic and local exponential stability of the closed loop is more
desirable than only global asymptotic stability obtained in [?] and [?] (for only for position tracking) because
local exponential stability results in certain robustness with respect to disturbances and fast convergence of the
tracking errors to zero when these errors are sufficiently small. Since the one-step ahead backstepping technique
is constructive and flexible, it is not restricted to an application in this paper but can be used for other control
designs.

3. Observers are proposed to exponentially estimate the unmeasured linear velocity of the aircraft and distur-
bances, which can be time-varying. These observers can be then applied to the full-state feedback control
design to result in controllers for tracking control of the aircraft without measurement of the linear velocity and
with disturbances. In comparison with [?] and [?], since the observers exponentially estimate the unmeasured
linear velocity and disturbances, the control system proposed in this paper gives more desirable information (an
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exponential estimate of linear velocity and disturbances) and does not need to introduce a leakage term or to use
a projection algorithm to prevent a parameter drift problem.

The rest of the paper is organized as follows. In Section 2., the aircraft’s equations of motion and control
objectives are presented. The one-step ahead backstepping method is introduced in Section 3.. The control design is
presented in Section 4.. Exponential observers for estimating the linear velocity and disturbances are given in Section
5.. Section 6. gives numerical simulation results. Proofs of the results are given in Appendices A, B, and C.

2. PROBLEM STATEMENT
2.1. Aircraft dynamics

Under the assumption that the aerodynamics are neglected, the Lagrangian approach results in the following
equations of motion of the quadrotor aircraft (see [?]):{

η̇1 = v1,
v̇1 = −ge3 + 1

mfR1(q)e3,

{
q̇ = K(q)ω,
ω̇ = −J−1S(ω)Jω + J−1τ ,

(1)

where e3 = [0 0 1]T , g is the gravity acceleration, m is the mass of the aircraft, J is the inertia matrix of the
aircraft. The vector η1 = [x y z]T denotes the (surge, sway, heave) displacements of the center of mass of the aircraft
coordinated in the earth-fixed frame. The vector v1 = [u v w]T denotes the (surge, sway, heave) velocities of the
aircraft coordinated in the earth-fixed frame. The skew-symmetric matrix S(x) is defined as S(x)y = x × y for
all y ∈ R3, where ′×′ denotes the vector cross product. The unit-quaternion q = [q0 q̄

T ]T , which represents the
attitude (orientation) of the aircraft coordinated in the body-fixed frame, is a four-element vector composed of a scalar
component q0 and a vector component q̄ ∈ R3 that satisfy q2

0 + ‖q̄‖2 = 1. The vector ω denotes the aircraft’s angular
velocity vector coordinated in the body-fixed frame. The matricesR1(q) andK(q) are given by

R1(q) = (q2
0 − ‖q̄‖2)I3×3 + 2q̄q̄T + 2q0S(q̄), K(q) =

1

2

[
−q̄T

q0I3×3 + S(q̄)

]
, (2)

where I3×3 is the 3× 3 identity matrix. Note that KT (q)K(q) = 1
4I3×3. The force f and the moment vector τ are

given by

f =

4∑
i=1

fi, τ =

 (f4 − f2)L
(f3 − f1)L

(f2 − f1 + f4 − f3)Ca

 , (3)

where fi, i = 1, .., 4 is the thrust generated by the ith rotor along the ith rotor axis, L is the distance between the rotor
and the aircraft’s center of mass, and Ca is a coefficient relating the difference in the rotor’s speed to the yaw moment
about the vertical body axis. The aircraft dynamics (1) is underactuated if we are interested in controlling all six
outputs (surge, sway, heave, roll, pitch and yaw) since there are only four independent control inputs fi, i = 1, · · · , 4.

For the purpose of the control design later, we let φ, θ, and ψ be the roll, pitch, and yaw angles, respectively,
coordinated in the body-fixed frame. The unit-quaternion q can be given in terms of φ, θ, and ψ as follows, see [?]:

q(η2) =


cos(φ2 ) cos( θ2 ) cos(ψ2 ) + sin(φ2 ) sin( θ2 ) sin(ψ2 )

sin(φ2 ) cos( θ2 ) cos(ψ2 )− cos(φ2 ) sin( θ2 ) sin(ψ2 )

cos(φ2 ) sin( θ2 ) cos(ψ2 ) + sin(φ2 ) cos( θ2 ) sin(ψ2 )

cos(φ2 ) cos( θ2 ) sin(ψ2 )− sin(φ2 ) sin( θ2 ) cos(ψ2 )

 , (4)

with η2 = [φ θ ψ]T . Using (4), we can write the matrixR1(q) = R1(η2) defined in (2) as

R1(η2) =

 cos(ψ) cos(θ) − sin(ψ) cos(φ) + sin(φ) sin(θ) cos(ψ)
sin(ψ) cos(θ) cos(ψ) cos(φ) + sin(φ) sin(θ) sin(ψ)
− sin(θ) sin(φ) cos(θ)

sin(ψ) sin(φ) + sin(θ) cos(ψ) cos(φ)
− cos(ψ) sin(φ) + sin(θ) sin(ψ) cos(φ)

cos(φ) cos(θ)

 .
2.2. Control objective

Control Objective 2..1 Assume that the reference position trajectory η1d(t) = [xd(t) yd(t) zd(t)]
T is sufficiently

smooth, i.e., its first four derivatives exist and are bounded in the sense that there exist non-negative constants %1, %2,
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%3, %4 such that

sup
t∈R+

‖η̇1d(t)‖ ≤ %1, sup
t∈R+

‖η̈1d(t)‖ ≤ %2, sup
t∈R+

‖
...
η1d(t)‖ ≤ %3, sup

t∈R+

‖
....
η 1d(t)‖ ≤ %4. (5)

Moreover, the absolute value of the second derivative of z1d(t) is assumed to be strictly less than g, i.e.,

sup
t∈R+

|z̈1d(t)| ≤ g − %5, (6)

where %5 is a strictly positive constant. The reference yaw angle ψd(t) is also assumed to be sufficiently smooth in the
sense that its first two derivatives exist and are bounded, i.e., there exist non-negative constants %6 and %7 such that

sup
t∈R+

|ψ̇1d(t)| ≤ %6, sup
t∈R+

|ψ̈1d(t)| ≤ %7. (7)

Under the above assumptions, design the control inputs fi, i = 1, · · · , 4 such that the position vector η1(t) and
the yaw angle ψ(t) of the aircraft globally asymptotically and locally exponentially track their reference trajectories
η1d(t) and ψd(t), i.e.,

lim
t→∞

(η1(t)− η1d(t)) = 0, lim
t→∞

(ψ(t)− ψd(t)) = 0, (8)

while keep all other states of the aircraft dynamics bounded for all initial conditions η1(t0) ∈ R3, v1(t0) ∈ R3,
q(t0) ∈ R3 with ‖q(t0)‖2 = 1, and ω(t0) ∈ R3.

Remark 2..1 The condition (6) implies that the aircraft is not allowed to land faster than it freely falls under the
gravitational force. We need this condition to design a continuous and global trajectory tracking controller.

3. PRELIMINARIES
In this section, we present a smooth saturation function and a one-step ahead backstepping method, which

will be used in the control design and stability analysis in the next section.

3.1. Smooth saturation function

Definition 3..1 The function σ(x) is said to be a smooth saturation function if it possesses the following properties:

σ(0) = 0, σ(x)x > 0, ∀ x ∈ {R− 0},
(x− y)[σ(x)− σ(y)] ≥ 0, ∀ (x, y) ∈ R2,

σ(−x) = −σ(x), |σ(x)| ≤ 1,
σ(x)

x
≤ 1, 0 <

dσ(x)

dx
≤ 1, ∀ x ∈ R.

Some functions satisfying the above properties include σ(x) = tanh(x) and σ(x) = x√
1+x2

. For the vector x =

[x1, · · · , xi, · · · , xn]T , we use the notation σ(x) = [σ(x1), · · · , σ(xi), · · · , σ(xn)]T to denote the smooth saturation
function vector of x.

3.2. One step ahead backstepping method

Consider the following second-order system:

ẋ1 = x2 + f1(t, x1, x2),

ẋ2 = u+ f2(t, x1, x2),
(9)

where t denotes time, x1 and x2 are the states, u is the control input, and we assume that

|f1(•)| ≤ %11,
∣∣∣∂f1(•)

∂t

∣∣∣ ≤ %12,
∣∣∣∂f1(•)
∂x2

∣∣∣ ≤ %13,
∣∣∣∂f1(•)
∂x1

x2

∣∣∣ ≤ %14,
∣∣∣∂f1(•)
∂x1

∣∣∣ ≤ %15, |f2(•)| ≤ %21, (10)

for all t ∈ R+, and (x1, x2) ∈ R2. In (10), • stands for (t, x1, x2), and %1i, i = 1, ..., 5, and %21 are nonnegative
constants with %13 strictly less than 1. It is noted that we need to impose the conditions (10) on f1(t, x1, x2) and
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f2(t, x1, x2) to make it possible to design a bounded control u that can globally and asymptotically and locally ex-
ponentially stabilize (9) at the origin. For example if f2(t, x1, x2) is not bounded by a constant, we cannot design a
bounded control u to globally and asymptotically and locally exponentially stabilize (9) at the origin since the control
u needs to cancel the term f2(t, x1, x2) in general.

Let us address the problem of designing u to globally and asymptotically and locally exponentially stabilize
(9) at the origin such that |u(t)| is bounded for all t ≥ t0 ≥ 0 by a positive constant for all (x1(t0), x2(t0)) ∈ R2 at
the initial time t0 ≥ 0. The one-step ahead backstepping control design consists of two steps.

Step 1. Define x2e = x2 − α1, where α1 is the virtual control of x2. Let us consider the Lyapunov function
candidate

V1 =

∫ x1

0

σ(s)ds, (11)

where σ(s) is a smooth saturation function defined in Definition 3..1. By differentiating both sides of (11), we choose
the virtual control α1 as

α1 =
−k1σ(x1)

∆1(x2)
− f1(t, x1, x2), (12)

where k1 is a positive constant such that k1+%13 is less than 1, and the function ∆1(x2) is chosen as ∆1(x2) = 1+ 1
2x

2
2.

Now substituting (12) and x2e = x2 − α1 into the derivative of V1 results in V̇1 = −k1σ(x1)2

∆1(x2) + σ(x1)x2e.
Step 2. Consider the Lyapunov function

V2 = γV1 +
1

2
x2

2e, (13)

where γ is a positive constant. With x2e = x2 − α1 and V̇1 = −k1σ(x1)2

∆1(x2) + σ(x1)x2e, where α1 is given in (12),
differentiating both sides of (13) and choosing the actual control u as

u =

(
1− ∂α1

∂x2

)−1(
−k2σ(x2e)− γσ(x1) +

∂α1

∂t
+
∂α1

∂x1

(
x2 + f1(t, x1, x2)

))
− f2(t, x1, x2) (14)

result in

V̇2 =
−k1γσ(x1)2

∆1(x2)
− k2σ(x2e)x2e. (15)

Since
∣∣∂α1

∂x2

∣∣ ≤ k1 + %13 for all (x1, x2) ∈ R2 and k1 + %13 < 1, the control u given in (14) is well defined. Based on
(11), (13) and (15), it is readily shown that the closed loop system consisting of (9) and (14) is forward complete and
is globally asymptotically and locally exponentially stable at the origin. From (14) a calculation shows that

|u(t)| ≤ k2 + γ + %12 + k1 + %14 + (k1 + %15)%11

1− k1 − %13
+ %21, (16)

for all t ≥ t0 ≥ 0. The above bound means that the magnitude of the control input u is bounded by a positive constant
for all initial conditions x1(t0) ∈ R and x2(t0) ∈ R.

Remark 3..1

1. The main difference between the above control design and the standard backstepping method [?] is that the
virtual control α1 in (12) is a function of both x1 and x2. This is crucial to allow us to design the bounded
control u in (14), see the term ∂α1

∂x1
x2.

2. There are several other methods (e.g., [?], [?]) to design bounded control laws for a chain of integrators inspired
by the work in [?]. However, it is difficult to apply these methods for designing global tracking controllers for
the quadrotor aircraft in this paper.

3. Although the one-step ahead backstepping method has been presented for a second-order system, it can be
straightforwardly to extend to a higher order system.

Global Tracking Control of Quadrotor VTOL Aircraft in Three-Dimensional Space (K.D. Do)
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4. CONTROL DESIGN
For clarity, the control design is presented for the quadrotor aircraft with full-state available for feedback

and without disturbances. The problem with disturbances and without linear velocity measurement is readily solved
by combining the control design proposed in this section and exponential observers for estimating the linear velocity
vector v1 and disturbances in Section 5.. The control design consists of two stages. In the first stage, the first two
equations of (1) will be considered. Using the one-step ahead backstepping method introduced in Subsection 3.2. we
will design the total thrust f and the virtual controls of the roll and pitch angles to globally asymptotically stabilize the
tracking error vector η1(t)−η1d(t) at the origin. In the second stage, the last two equations of (1) will be considered.
Using the backstepping technique [?], the moment vector τ will be designed to globally asymptotically and locally
exponentially stabilize the tracking error ψ(t)− ψd(t) and the errors between the virtual controls of the roll and pitch
angles and their actual values at the origin.

4.1. Stage 1

This stage consists of two steps.

4.1.1. Step 1

In this step, the first equation of (1) is considered. We will design a virtual control of v1 to force η1(t) to
globally asymptotically and locally exponentially track its reference trajectory η1d(t). As such, we define

η1e = η1 − η1d,

v1e = v1 −αv1 ,
(17)

where αv1 is a virtual control of v1. Substituting (17) into the first equation of (1) results in

η̇1e = αv1 + v1e − η̇1d. (18)

To design the virtual control αv1 , we consider the Lyapunov function candidate

V1 =

∫ η1e

0

σT (s)ds, (19)

whose derivative along the solutions of (18) satisfies

V̇1 = σT (η1e)(αv1 + v1e − η̇1d), (20)

which suggests that we use the one-step ahead backstepping method introduced in Subsection 3.2. to design the virtual
control αv1 as follows

αv1 = −K1
σ(η1e)

∆(v1)
+ η̇1d, (21)

whereK1 = diag(k11, k12, k13) with k11, k12, and k13 being positive constants to be chosen later. The term ∆(v1) is
chosen as

∆(v1) = 1 +
1

2
‖v1‖2. (22)

Substituting (21) into (20) gives

V̇1 = −σ
T (η1e)K1σ(η1e)

∆(v1)
+ σT (η1e)v1e. (23)

On the other hand, substituting (21) into (18) yields

η̇1e = −K1
σ(η1e)

∆(v1)
+ v1e. (24)

To prepare for the next step, we calculate v̇1e by differentiating both side of the second equation of (17) along the
solutions of (21) and the second equation of (1) to obtain

v̇1e = G1

(
− ge3 +

1

m
fR1(q)e3

)
+ F1 − η̈1d, (25)
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where

G1 = I3×3 −K1
σ(η1e)v

T
1

∆2(v1)
,

F1 = K1
σ′(η1e)

∆(v1)

(
−K1

σ(η1e)

∆(v1)
+ v1e

)
, σ′(η1e) =

∂σ(η1e)

∂η1e
.

(26)

Let v1 and σ(η1e) be written in their components as v1 = [v11 v12 v13]T and σ(η1e) = [σ(η11e) σ(η12e) σ(η13e)]
T .

From (26), we calculate the determinant ofG1 as follows:

det(G1) = 1− k11
σ(η11e)v11

∆2(v1)
− k12

σ(η12e)v12

∆2(v1)
− k13

σ(η13e)v13

∆2(v1)
≥ 1−

√
2

2
(k11 + k12 + k13). (27)

Therefore, we choose the elements k11, k12, and k13 of the matrix such that

1−
√

2

2
(k11 + k12 + k13) > 0 (28)

to ensure that the matrix G1 is invertible. Moreover, substituting v1e defined in the second equation of (17) with
α1(v1) defined in (21) into the expression of the the vector F1 defined in the second equation of (26) gives

F1 = K1
σ′(η1e)

∆(v1)

(
v1 − η̇1d

)
. (29)

Using the expression of ∆(v1) defined in (22), we have the following bound of F1:

‖F1‖ ≤ λM (K1)
(

2 + %1

)
, (30)

where %1 is defined in (5), and λM (K1) is the maximum eigenvalue ofK1.

4.1.2. Step 2

We define
qe = q ±αq (31)

where αq = [αq0 α
T
q̄ ]T with αq̄ = [αq1 αq2 αq3 ]T is a virtual control of q. We use the ± in (31) to resolve the sign

ambiguity since q = [q0 q̄
T ]T must satisfy the constraint q2

0 + ‖q̄‖2 = 1. The ± sign in (31) results in the same
desired orientation of the aircraft when qe is equal to zero. This is because from (4) we have q(η2) = −q(η2 ± 2π).
Therefore, αq represents the desired Euler angles corresponding to those, which are represented by −αq , rotated by
an angle of 2π. Substituting (31) into (2) results in

R1(q) = R1(αq) +H(qe,αq), (32)

where

H(qe,αq) =
[
q0e(q0e±2αq0)−q̄Te (q̄e±2αq̄)

]
I3×3+2q̄e(q̄

T
e ±2αTq̄ )+2

[
q0e(S(q̄e))±S(αq̄)±αq0S(q̄e)

]
, (33)

since S(x+ y) = S(x) + S(y) for all x ∈ R3 and y ∈ R3. Now let us define αη2
= [αφ αθ αψ]T with

αψ = ψd, (34)

which is the virtual control of η2 corresponding to the virtual unit-quaternion vector αq . Using (5), we can write
R1(αq) = R1(αη2

) as
R1(αq) = R1(η2)

∣∣
η2=αη2

, (35)

where using (4) we have the relationship between αq and αη2 as follows:

αq = q(η2)
∣∣
η2=αη2

. (36)

The purpose of writing down (35) and (36) is that it is difficult to design the virtual control αq to globally asymptot-
ically stabilize the error vector v1e at the origin. Therefore, we will design the virtual control αη2

(only αφ and αθ
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since αψ is already available in (34)) by using (35) then the virtual control αq will be found by substituting αη2
into

(36). To design the control f and the virtual control αη2
, we consider the Lyapunov function candidate

V2 = γV1 +
1

2
‖v1e‖2, (37)

where γ is a positive constant. Differentiating both sides of (37) along the solutions of (23), (25), and (32) gives

V̇2 = −γσ
T (η1e)K1σ(η1e)

∆(v1)
+vT1e

[
γσ(η1e)+G1

(
−ge3+

1

m
fR1(αq)e3

)
+F1−η̈1d

]
+vT1eG1

1

m
fH(qe,αq)e3,

(38)
which suggests that we choose

fR1(αq)e3 = mG−1
1

(
−K2σ(v1e)− F1 − γσ(η1e) + η̈1d

)
+mge3

∆
= Ω, (39)

where K2 = diag(k21, k22, k23) with k21, k22, and k23 positive constants to be chosen later. Let Ω1, Ω2, and Ω3

be the elements of Ω, i.e., Ω = [Ω1 Ω2 Ω3]T . From (39), we obtain the upper bounds of |Ω1|, |Ω2|, and |Ω3|, and
lower-bound of Ω3:

|Ω1| ≤
m

%0

(
(1− k12 − k13)(k21 + λM (K1)(2 + %1) + γ + %21) + k11(2k13 + 1)×

(k22 + λM (K1)(2 + %1) + γ + %22) + k11(2k12 + 1)(k23 + λM (K1)(2 + %1) + γ + %23)
)

:= Ω1M ,

|Ω2| ≤
m

%0

(
k12(2k13 + 1)(k21 + λM (K1)(1 + 0.5%1) + γ + %21) + (1− k11 − k13)×

(k22 + λM (K1)(2 + %1) + γ + %22) + k12(2k11 + 1)(k23 + λM (K1)(2 + %1) + γ + %23)
)

:= Ω2M ,

|Ω3| ≤
m

%0

(
k13(2k12 + 1)(k21 + λM (K1)(2 + %1) + γ + %21) + k13(2k11 + 1)(k22 + λM (K1)×

(2 + %1) + γ + %22) + (1− k11 − k12)(k23 + λM (K1)(2 + %1) + γ + %23)
)

+mg := Ω3M ,

Ω3 ≥−
m

%0

(
k13(2k12 + 1)(k21 + λM (K1)(2 + %1) + γ + %21) + k13(2k11 + 1)×

(k22 + λM (K1)(2 + %1) + γ + %22) + (1− k11 − k12)(k23 + λM (K1)(2 + %1) + γ + %23)
)

+mg,

(40)

where %0 = 1−
√

2
2 (k11 + k12 + k13), %21 = supt∈R+ |ẍ1d(t)|, %22 = supt∈R+ |ÿ1d(t)|, and %23 = supt∈R+ |z̈1d(t)|.

We now specify the gain matrices and the constant γ such that Ω3 ≥ Ω∗3 with Ω∗3 being a strictly positive constant, i.e.,

Ω3 ≥
−m
%0

(
k13(2k12 + 1)(k21 + λM (K1)(2 + %1) + γ + %21) + k13(2k11 + 1)(k22 + λM (K1)×

(2 + %1) + γ + %22) + (1− k11 − k12)(k23 + λM (K1)(2 + %1) + γ + g − %5)
)

+mg ≥ Ω∗3,

(41)

where we have used (6). Since %5 is a strictly positive constant, we can choose sufficiently smallK1,K2, and γ such
that the condition (41) holds. This condition is necessary for designing a global control law for αθ later. As such, the
equation (39) yields fe3 = R−1

1 (αq)Ω. SinceR−T1 (αq)R−1
1 (αq) = I3×3, we have

f =
√

ΩTΩ. (42)

Since Ω ≥ Ω∗3, see (41), we have f =
√

Ω2
1 + Ω2

2 + Ω2
3 ≥ Ω∗3. On the other hand, we expand the term R−1

1 (αq)Ω
using (35) and e3 = [0 0 1]T to obtain

cos(αψ) cos(αθ)Ω1 + sin(αψ) cos(αθ)Ω2 − sin(αθ)Ω3 = 0,[
− sin(αψ) cos(αφ) + sin(αφ) sin(αθ) cos(αψ)

]
Ω1 +

[
cos(αψ) cos(αφ) + sin(αφ) sin(αθ) sin(αψ)

]
Ω2+

sin(αφ) cos(αθ)Ω3 = 0,[
sin(αψ) sin(αφ) + sin(αθ) cos(αψ) cos(αφ)

]
Ω1 +

[
− cos(αψ) sin(αφ) + sin(αθ) sin(αψ) cos(αφ)

]
Ω2+

cos(αφ) cos(αθ)Ω3 = f.

(43)
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Now multiplying the second equation of (43) by − cos(αφ) then adding with the third equation of (43) multiplied by
sin(αφ) results in

αφ = arcsin

(
sin(αψ)Ω1 − cos(αψ)Ω2√

ΩTΩ

)
, (44)

which is well defined since | sin(αψ)Ω1 − cos(αψ)Ω2| ≤
√

Ω2
1 + Ω2

2 <
√

ΩTΩ due to Ω3 ≥ Ω∗3 > 0, see (41).
Moreover, from the first equation of (43) we have

αθ = arctan

(
cos(αψ)Ω1 + sin(αψ)Ω2

Ω3

)
, (45)

which is also well defined since Ω3 ≥ Ω∗3 > 0, see (41). Substituting (39) into (38) results in

V̇2 = −γσ
T (η1e)K1σ(η1e)

∆(v1)
− vT1eK2σ(v1e) +

1

m
vT1eG1

√
ΩTΩH(qe,αq)e3. (46)

Substituting (39) into (25) results in

v̇1e = −K2σ(v1e)− γσ(η1e) +
1

m
G1

√
ΩTΩH(qe,αq)e3. (47)

4.2. Stage 2

4.2.1. Step 1

We define
ωe = ω −αω, (48)

where αω is a virtual control of ω. Before calculating q̇e, let us calculate α̇q . From (36), we have

α̇q = K(αq)χ, (49)

where

K(αq) =
1

2

[
−αTq̄

αq0I3×3 + S(αq̄)

]
,

χ =

 1 0 − sin(αθ)
0 cos(αφ) cos(αθ) sin(αφ)
0 − sin(αφ) cos(αθ) cos(αφ)




∂αφ
∂η1

v1 +
∂αφ
∂v1

(
− ge3 + 1

mfR1(q)e3

)
+
∑3
i=1

∂αφ

∂
(i−1)
η1d

(i)
η1d +

∂αφ
∂ψd

ψ̇d

∂αθ
∂η1
v1 + ∂αθ

∂v1

(
− ge3 + 1

mfR1(q)e3

)
+
∑3
i=1

∂αθ

∂
(i−1)
η1d

(i)
η1d + ∂αθ

∂ψd
ψ̇d

ψ̇d

 .
(50)

Differentiating both sides of (31) along the solutions of (48), (49), and the third equation of (1) yields

q̇e = K(q)(αω + ωe)±K(αq)χ. (51)

Since there is the sign ambiguity in (51), which is resulted from the definition of qe, see (31), it is difficult to design the
virtual control αω from (51) to stabilize qe at the origin. Thus, we perform the following coordinate transformations

z0 = αq0q0 +αTq̄ q̄, z̄ = αq0 q̄ − q0αq̄ − S(αq̄)q̄, (52)

where αq0 is the first element of αq and αq̄ is the vector containing the second, third and fourth elements of αq , i.e.,

αq = [αq0 α
T
q̄ ]T . (53)

From (52), we have the following proposition:

Proposition 4..1 The following implication holds:{
limt→∞ z0(t) = ±1
limt→∞ z̄(t) = 0

⇒ lim
t→∞

qe(t) = 0. (54)
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Proof. See Appendix A. This proposition implies that designing the virtual control αω to stabilize qe at the origin is
equivalent to designing αω to stabilize z0 at ±1 and z̄ at the origin. As such, differentiating both sides of (52) along
the solutions of (31), the third equation of (1), (48) and (51) yields

ż0 = −1

2
z̄T (αω − χ+ ωe), ˙̄z =

1

2
G2(αω − χ+ ωe), (55)

where
G2 = z0I3×3 + S(z̄). (56)

To design the virtual control αω , we consider the following Lyapunov function candidate

V3 = ‖z̄‖2, (57)

whose derivative along the solutions of the second equation of (55) satisfies

V̇3 = z̄TG2(αω − χ+ ωe), (58)

which suggests that we choose
αω = −k3G

T
2 z̄ + χ, (59)

where k3 is a positive constant. It is noted that αω is a smooth function of z0, z̄, η1, v1, q, η1d η̇1d, η̈1d,
...
η1d, ψd,

and ψ̇d. Substituting (59) into (58) gives

V̇3 = −k3z̄
TG2G

T
2 z̄ + z̄TG2ωe. (60)

Substituting (59) into (55) gives

ż0 =
k3

2
z̄TGT

2 z̄ −
1

2
z̄Tωe, ˙̄z = −k3

2
GT

2 z̄ +
1

2
G2ωe. (61)

4.2.2. Step 2

This is the final step, in which we design the actual moment vector τ to stabilize ωe at the origin. Differenti-
ating both sides of (48) along the solutions of (48), (55) and (1) yields

ω̇e =− J−1S(ω)Jω + J−1τ − ∂αω
∂z0

(
− 1

2
z̄T (αω − χ+ ωe)

)
− ∂αω

∂z̄

(
1

2
G2(αω − χ+ ωe)

)
− ∂αω
∂η1

v1 −
∂αω
∂v1

(
− ge3 +

1

m
fR1(q)e3

)
− ∂αω

∂q

(
K(q)ω

)
−

4∑
i=1

∂αω

∂
(i−1)
η1d

(i)
η1d−

2∑
i=1

∂αω

∂
(i−1)

ψd

(i)

ψd,
(62)

which suggests that we choose the control τ as

τ =− JK4ωe + S(ω)Jω + J

[
∂αω
∂z0

(
− 1

2
z̄T (αω − χ+ ωe)

)
+
∂αω
∂z̄

(
1

2
G2(αω − χ+ ωe)

)
+
∂αω
∂η1

v1 +
∂αω
∂v1

(
− ge3 +

1

m
fR1(q)e3

)
+
∂αω
∂q

(
K(q)ω

)
+

4∑
i=1

∂αω

∂
(i−1)
η1d

(i)
η1d +

2∑
i=1

∂αω

∂
(i−1)

ψd

(i)

ψd,

]
,

(63)

whereK4 is a positive definite matrix. Substituting (63) into (62) results in

ω̇e = −K4ωe. (64)

For convenience of stability analysis, we rewrite the closed loop system consisting of (24), (47), (61), and (64) as
follows:

η̇1e = −K1
σ(η1e)

∆(v1)
+ v1e,

v̇1e = −K2σ(v1e)− γσ(η1e) +
1

m
G1

√
ΩTΩH(qe,αq)e3,

ż0 =
k3

2
z̄TGT

2 z̄ −
1

2
z̄Tωe,

˙̄z = −k3

2
GT

2 z̄ +
1

2
G2ωe,

ω̇e = −K4ωe.

(65)

The control design has been completed. We summarize the results in the following theorem.
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Theorem 4..1 Under the assumptions that the reference position trajectory η1d(t) is sufficient smooth and satisfies
the conditions (5) and (6) and that the reference yaw angle ψd(t) is sufficiently smooth and satisfies the condition
(7), the control laws consisting of (42) and (63) solve Control objective 2..1. In particular, the followings hold for all
initial conditions η1(t0) ∈ R3, v1(t0) ∈ R3, q(t0) ∈ R3 with ‖q(t0)‖2 = 1, and ω(t0) ∈ R3:

1. The actual control input fi, i = 1, · · · , 4 to the rotor i can be found by solving (3) with f and τ given in (42)
and (63), respectively, i.e., 

f1

f2

f3

f4

 =


1 1 1 1
0 −L 0 L
−L 0 L 0
−Ca Ca −Ca Ca


−1 [

f
τ

]
. (66)

2. The closed loop system (65) is forward complete.

3. The aircraft’s position η1(t) and the aircraft’s yaw angle ψ(t) of the aircraft globally asymptotically and locally
exponentially track their reference trajectories η1d(t) and ψd(t).

4. All other states of the aircraft dynamics bounded.

Proof. See Appendix B.

5. DEALING WITH UNMEASURED LINEAR VELOCITY AND DISTURBANCES
In Section 4., the control design was presented for the quadrotor aircraft with full-state available for feedback

and without disturbances. In this section, we address the unmeasured linear velocity and the disturbance issues. For
the unmeasured linear velocity problem, we provide a design of exponential observers for estimating the unmeasured
linear velocity vector v1. For the disturbance problem, we include disturbance force and disturbance moment vectors
in the quadrotor dynamics and design exponential observers for estimating these disturbance vectors. The control
design can be then done by combining the control design in Section 4. with the exponential observers developed in
this section.

5.1. Dealing with unmeasured linear velocity

This subsection develops an exponential observer to estimate the linear velocity v1 of the quadrotor aircraft.
For convenience, we here rewrite the position dynamics of the aircraft, i.e., the first two equations of (1):

η̇1 = v1,

v̇1 = −ge3 +
1

m
fR1(q)e3.

(67)

Since the second equation of (67) does not contain a damping term, designing an exponential observer for estimating
v1 is slightly involved. Nevertheless, we propose the following observer:

˙̂η1 = χ+K01(η1 − η̂1),

v̂1 = χ+K01(η1 − η̂1),

χ̇ = −ge3 +
1

m
fR1(q)e3 +K02(η1 − η̂1),

(68)

where η̂1 and v̂1 denote estimates of η1 and v1, respectively, K01 and K02 are positive definite matrices. We now
show that the observer (68) ensures that η̂1 and v̂1 exponentially tend to η1 and v1, respectively. To do so, let us define
the following observer errors:

η̃1 = η1 − η̂1,

ṽ1 = v1 − v̂1.
(69)

Differentiating both sides of (69) along the solutions of (68) and (67) yields

˙̃η1 = ṽ1,

˙̃v1 = −K02η̃1 −K01ṽ1,
(70)

which is globally exponentially stable at the origin becauseK01 andK02 are positive definite matrices.
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5.2. Dealing with disturbances

The dynamics of the quadrotor aircraft subject to disturbances can be represented as:{
η̇1 = v1,

v̇1 = −ge3 +
1

m
fR1(q)e3 +

1

m
Fd,

{
q̇ = K(q)ω,
ω̇ = −J−1S(ω)Jω + J−1(τ + τd),

(71)

where Fd is the disturbance force vector coordinated in the earth-fixed frame and τd is the disturbance moment vector
coordinated in the body-fixed frame. The goal of this subsection is to design observers that exponentially estimate the
disturbance vectors FE and τd. To avoid repeating representation, we design an observer for exponentially estimating
a disturbance vector in a general second-order nonlinear system, which covers the dynamics of the quadrotor aircraft
(71). As such, we consider the following second-order system:

ẋ1 = f1(t,x1,x2),

ẋ2 = f2(t,x1,x2) +G(t,x1)d(t),
(72)

where t ∈ R+, x1 ∈ Rn, x2 ∈ Rn, f1(t,x1,x2) and f2(t,x1,x2) are vectors of known functions of t, x1 and x2,
G(t,x1) is a matrix whose elements are functions of t and x1, and d(t) is a vector of unknown disturbances. The
system (72) satisfies the following assumption:

Assumption 5..1

1. The disturbance vector d(t) and its derivative are bounded, i.e., there exist nonnegative constants dM and d1M

such that ‖d(t)‖ ≤ dM and ‖ḋ(t)‖ ≤ d1M , for all t ≥ t0 ≥ 0, where t0 ≥ 0 is the initial time.

2. The system (72) is well-posed for all t ≥ t0 ≥ 0.

3. The matrixG(t,x1) is invertible for all t ≥ t0 ≥ 0 and x1 ∈ Rn, and is differentiable with respect to t and x1.

The disturbance observer is given in the following lemma.

Lemma 5..1 Under Assumption 5..1, the disturbance observer d̂ of the disturbance d(t) is given by

d̂ = ξ +KG−1(t,x1)x2,

ξ̇ = −Kξ −K
(
∂G−1(t,x1)

∂t
+
∂G−1(t,x1)

∂x1
f1(t,x1,x2)

)
x2 −K

(
G−1(t,x1)f2(t,x1,x2) +KG−1(t,x1)x2

)
,

ξ(t0) = −KG−1(t0,x1(t0))x2(t0),

(73)

where K is a symmetric and positive definite matrix. The system (73) guarantees that the disturbance observer error
de = d̂− d and the disturbance observer d̂ satisfy the following properties:

‖de(t)‖ ≤

√(
‖d(t0)‖2 −

d2
1M

λ2
m(K)

)
e−λm(K)(t−t0) +

d2
1M

λ2
m(K)

,

‖d̂(t)‖ ≤ λM (K)

λm(K)
dM ,

(74)

for all t ≥ t0 ≥ 0, where λM (K) and λm(K) are the maximum and minimum eigenvalues ofK, respectively.

Proof. See Appendix C.

Remark 5..1

1. The system (73) is dynamical. The state ξ is generated by the second equation of (73), which is an ordinary
differential equation, with the initial value ξ(t0) chosen as in the third equation of (73). The choice of the matrix
K directly affects performance of the disturbance observer. The larger eigenvalues of the matrix K give the
faster the response of the disturbance observer.
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2. The first inequality of (74) means that the disturbance observer error de(t) exponentially converges to a ball
with a radius of d1M

λm(K) centered at the origin. The radius d1M
λm(K) can be made arbitrarily small by choosing a

matrixK with a large minimum eigenvalue. In the case d1M = 0, i.e., the constant disturbance, the disturbance
observer error de(t) exponentially converges to zero. The second inequality of (74) gives the upper-bound of
the disturbance observer d̂(t). This upper-bound depends on the upper-bound of the disturbance d(t) and the
matrix K. If we choose K such that λm(K) = λM (K), then the upper-bound of the disturbance observer
d̂(t) will not exceed the upper-bound dM of the disturbance d(t).

3. Continuality and differentiability of the disturbance observer d̂(t) depend only on those of f1(t,x1,x2), f2(t,x1,x2),
andG(t,x1).

Applying Lemma 5..1 to (71) results in the following observers for exponentially estimating Fd and τd: F̂d = ξ1 +mKd1v1,

ξ̇1 = −Kd1ξ1 −Kd1

(
−mge3 + fR1(q)e3 +mK1dv1

)
,

ξ1(t0) = −mKd1v1(t0),
τ̂d = ξ2 +Kd2Jω,

ξ̇2 = −Kd2ξ2 −Kd2

(
− S(ω)Jω + τ +Kd2Jω

)
,

ξ2(t0) = −Kd2Jω(t0),

(75)

whereKd1 andKd2 are diagonal and positive definite matrices. The observers (75) guarantee that the observer errors
Fde = F̂d − Fd and τde = τ̂d − τd, and the observers F̂d and τ̂d satisfy

‖Fde(t)‖ ≤

√(
‖Fd(t0)‖2 − F 2

1dM

λ2
m(Kd1)

)
e−λm(Kd1)(t−t0) +

F 2
1dM

λ2
m(Kd1)

,

‖F̂d(t)‖ ≤
λM (Kd1)

λm(Kd1)
FdM ,

‖τde(t)‖ ≤

√(
‖τd(t0)‖2 − τ2

1dM

λ2
m(Kd2)

)
e−λm(Kd2)(t−t0) +

τ2
1dM

λ2
m(Kd2)

,

‖τ̂d(t)‖ ≤
λM (Kd2)

λm(Kd2)
τdM ,

(76)

for all t ≥ t0 ≥ 0, where FdM and F1dM are the upper bounds of ‖Fd‖ and ‖Ḟd‖, respectively, and τdM and τ1dM
are the upper bounds of ‖τd‖ and ‖τ̇d‖, respectively. It is noted from (76) that the disturbance observer errors Fde
and τde exponentially converge to balls, which are centered at the origin and have radii of F1dM

λm(Kd1) and τ1dM
λm(Kd2) ,

respectively. These radii can be made arbitrarily small by choosing the matrices Kd1 and Kd2 with sufficiently
large λm(Kd1) and λm(Kd2), respectively. Indeed, if Fd and τd are constant we have F1dM = τ1dM = 0, i.e.,
the disturbance observer errors Fde and τde exponentially converge zero. Moreover, the disturbance estimates F̂d
and τ̂d are upper bounded by λM (Kd1)

λm(Kd1)FdM and λM (Kd2)
λm(Kd2) τdM , respectively. In addition, let Fd = [Fxd Fyd Fzd]

T ,

F̂d = [F̂xd F̂yd F̂zd]
T , and FxdM , FydM , and FzdM be the upper bounds of |Fxd|, |Fyd|, and |Fzd|, respectively.

Then we have |F̂xd| ≤ λM (Kd1)
λm(Kd1)FxdM , |F̂yd| ≤ λM (Kd1)

λm(Kd1)FydM , and |F̂zd| ≤ λM (Kd1)
λm(Kd1)FzdM because the matrix K1d

is diagonal.
The above linear velocity and disturbance observers ensure that the control design presented in Section 4. is

straightforwardly extended to handle the unmeasured linear velocity and disturbance problems. The only note to take
is that the condition (6) is replaced by

sup
t∈R+

|z̈1d(t)| ≤ g − %5 −
λM (Kd1)

λm(Kd1)
FzdM . (77)

This condition implies that the aircraft is not desirable to land or to take-off faster than it freely falls under gravity and
the disturbance force in the vertical direction.

6. SIMULATION RESULTS
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Figure 2. Position and attitude tracking errors, and con-
trol forces

In this section, we illustrate the effectiveness of
the proposed global tracking controller through a numeri-
cal simulation. The aircraft’s parameters are taken as m =
0.5kg, L = 0.25m, Ca = 0.05m, g = 9.81m/s2, and J =
10−3diag(5, 5, 9)kg/m2. The reference trajectories are
taken as η1d(t) = [10 sin(0.01t) 10 cos(0.01t) 0.1t]T ,
and ψd(t) = 0.01t. The smooth saturation function σ(•)
is chosen as σ(•) = tanh(•). The control gains are cho-
sen as K1 = K2 = 0.5I3×3, k3 = 5, K4 = 10I3×3, and
γ = 0.5.

It can be verified that the conditions (28) and
(41) hold. The initial conditions are η1(0) = [5 1 1]T ,
v1(0) = [0 0 0]T , q(0) = [0.883 0.3 − 0.2 − 0.3]T , and
ω(0) = [0 0 0]T . The position reference trajectory η1d

and the position real trajectory η1 are plotted in Figure 1.
The position and attitude tracking errors and control forces
are plotted in Figure 2. It is seen from these figures that all
tracking errors asymptotically converge to zero. Noticing
that it takes longer time for the position tracking error vec-
tor η1e(t) to converge to zero than for the attitude tracking
error vector qe since we need to choose sufficiently small
gain matrices K1 and K2 so that the conditions (28) and
(41) hold.

7. CONCLUSIONS
The attractive points of this paper include the

combination of the Euler angles and unit-quaternion for
the aircraft’s attitude representation, and the one-step
backstepping ahead. These features can be applied to de-
sign global tracking controllers for underactuated ocean
and land vehicles in the future.

A PROOF OF PROPOSITION 4.1
Noticing from (52) that z0 = αTq q and from (36)

that ‖αq‖2 = 1, therefore the case where z0 = 1 and z̄ = 0 corresponds to the minus sign in (31) and the case where
z0 = −1 and z̄ = 0 corresponds to the plus sign in (31). We only consider the case where limt→∞ z0(t) = 1 and
limt→∞ z̄(t) = 0. The case where limt→∞ z0(t) = −1 and limt→∞ z̄(t) = 0 can be carried out in the same manner.
Moreover, it is sufficient to take z0 = 1 and z̄ = 0 the instead of their limits since z0(t) and z̄(t) are bounded (recall
that z2

0(t) + ‖z̄(t)‖2 = 1 for all t ≥ t0 ≥ 0). Using αq = q − qe from (31), we can write z0 and z̄ defined in (52) in
terms of qe as follows:

z0 = 1− qTqe,
z̄ = −q0eq̄ + q0q̄e − S(q̄e)q̄.

(78)

We consider two separate cases where q0 6= 0 and q0 = 0. For the case where q0 6= 0, setting z0 = 1 and z̄ = 0 in
(78), and multiplying both sides of the second equation of (78) by q̄Te give{

q̄T q̄e + q0q0e = 0
−q0eq̄

T
e q̄ + q0q̄

T
e q̄e = 0

⇒ q0q
T
e qe = 0, (79)

which yields qe = 0 since q0 6= 0 for this case. For the case where q0 = 0, setting z0 = 1 and z̄ = 0 in (78), and
multiplying both sides of the second equation of (78) by q̄T give{

q̄T q̄e = 0
−q0eq̄

T q̄ = 0
⇒ q0q

Tq = 0. (80)

Since q0 = 0 for this case and qTq = 1, we have q̄T q̄ = 1. This implies from (80) that q0e = 0. We now need to
show that q̄e = 0. Since we have already shown that q0e = 0 and are considering the case where q0 = 0, the second
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equation of (78) with z̄ = 0 gives S(q̄e)q̄ = 0. This equation and the first equation of (80) mean that the dot and
cross products of the two vectors q̄e and q̄ are both equal to zero while ‖q̄‖ = 1. Therefore, we must have q̄e = 0. �

B PROOF OF THEOREM 4.1
To prove Theorem 4..1, we first show that the closed loop system (65) is forward complete. Second, we

consider the last equation of the closed loop system to show that ωe(t) exponentially converges to zero. Third, we
prove that z̄(t) and z0(t) asymptotically tend to 0 and ±1, respectively. Fourth, we show that η1e(t) and v1e(t)
asymptotically converge to zero. Last, we prove that all other states of the aircraft dynamics bounded.

B1. Proof of forward completeness of the closed loop system and exponential convergence of ωe(t)

To prove that the closed loop system (65) is forward complete, we consider the following function

ϕ1 =
√

1 + V2 + z2
0 + V3 +

ξ0
2
‖ωe‖2, (81)

where V2 is given in (37) with V1 defined in (19), and ξ0 is a positive constant to be selected. It is seen that ϕ1 is
positive definite and radially unbounded in η1e, v1e, z0, z̄, and ωe. It can be shown that the first derivative of ϕ1 with
respect to time along the solutions of (46), the third equation of the closed loop system (65), (60), and the last equation
of the closed loop system (65) satisfies

ϕ̇1 =
1√

1 + V2

[
− γσ

T (η1e)K1σ(η1e)

∆(v1)
− vT1eK2σ(v1e) +

1

m
vT1eG1

√
ΩTΩH(qe,αq)e3

]
+

k3

2
z̄TGT

2 z̄z0 −
1

2
z̄Tωez0 − k3z̄

TG2G
T
2 z̄ + z̄TG2ωe − ξ0ωTeK4ωe

(82)

Using the expressions ofG1 in (26),G2 in (56),H(qe,αq) in (32) or in (33), and the bound of the elements Ω1, Ω2,
and Ω3 of Ω defined in (40), we have

‖G1‖ ≤ 1 + ‖K1‖, ‖G2‖ ≤ 2, ‖H(qe,αq)‖ ≤ 2,
√

ΩTΩ ≤
√

Ω2
1M + Ω2

2M + Ω2
3M . (83)

Using (83) and the fact that z2
0 + z̄T z̄ = 1, we can bound ϕ̇ as follows:

ϕ̇1 ≤ −M1‖ωe‖2 +M2, (84)

where

M1 = 2

(
ξ0λm(K4)− 5

4

)
,

M2 =
5

4
+

1

m
2
√

2(1 + ‖K1‖)
√

Ω2
1M + Ω2

2M + Ω2
3M ,

(85)

where λm(K4) is the minimum eigenvalue of K4. Hence picking ξ0 ≥ 5
4λm(K4) results in ϕ̇1 ≤M2, which together

with ϕ1 defined in (81) implies that the closed loop system (65) is forward complete.
Since we have already proved that the closed loop system (65) is forward complete, to show that ωe(t)

exponentially converges to zero we can consider the last equation of the closed loop system (65) separately. As such,
we consider the function V4 = 1

2‖ωe‖
2 whose derivative along the solutions of the last equation of the closed loop

system (65) is V̇4 = −ωTeK4ωe, which implies that ωe(t) exponentially converges to zero since K4 is a positive
definite matrix.

B2. Proof of asymptotic convergence of z0(t) and z̄(t)

To show that limt→∞ z0(t) = ±1 and limt→∞ z̄(t) = 0, we consider V0 = z2
0 and V3 defined in (57) to

obtain

Z0)

{
V0 = z2

0

V̇0 = k3z
2
0‖z̄‖2 − z0z̄

Tωe
, Z̄)

{
V3 = ‖z̄‖2
V̇3 = −k3z

2
0‖z̄‖2 + z̄TG2ωe,

(86)

where we have used (60), the third equation of the closed loop system (65). Using the fact that we have already proved
that ωe(t) exponentially converges to zero, and that z0(t) and z̄(t) are bounded (since z2

0(t) + ‖z̄(t)‖2 = 1 for all
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t ≥ t0 ≥ 0), instead of considering (86) to study asymptotic convergence of z0(t) and z̄(t) we can consider the
following equations

Z∗0 )

{
V ∗0 = z2

0

V̇ ∗0 = k3z
2
0‖z̄‖2

, Z̄∗)

{
V ∗3 = ‖z̄‖2
V̇ ∗3 = −k3z

2
0‖z̄‖2.

(87)

The subsystem Z∗0 is unstable. Instability of the subsystem Z∗0 implies that z0(t) asymptotically tends to a non-zero
but bounded value if z0(t0) 6= 0. If z0(t0) = 0, arbitrarily small noise will drive z0(t0) to a non-zero value z0(t) at
some t since the subsystem Z∗0 is unstable. A non-zero z0(t) implies from the subsystem Z̄∗ that z̄(t) tends to zero
asymptotically. Since z2

0(t) + ‖z̄(t)‖2 = 1, z0(t) will eventually converge to 1 or −1. Asymptotic convergence of
z0(t) to ±1 and z̄(t) to 0 implies from Proposition 4..1 that qe(t) asymptotically converge to 0.

B3. Proof of asymptotic convergence of η1e(t) and v1e(t)

To prove asymptotic convergence of η1e(t) and v1e(t) to zero, we consider the following Lyapunov function
candidate

V ∗2 = 2
√

1 + V2, (88)

whose derivative along the solutions of (46)

V̇ ∗2 = − 1√
1 + V2

(
γ
σT (η1e)K1σ(η1e)

∆(v1)
+ vT1eK2σ(v1e)

)
+$H(qe,αq)e3, (89)

where $ = 1√
1+V2

1
mv

T
1eG1

√
ΩTΩ. We need to show that the term $ is bounded by a constant. As such, using V2 in

(37),G1 in (26), and the bound of the elements Ω1, Ω2, and Ω3 of Ω defined in (40), we can calculate the bound of $
as follows:

$ =
1

m

vT1eG1

√
ΩTΩ√

1 + γV1 + 1
2‖v1e‖2

≤ 1

m

‖v1e‖‖G1‖
√

ΩTΩ√
1 + γV1 + 1

2‖v1e‖2
≤ 1

m

√
2(1 + ‖K1‖)

√
Ω2

1M + Ω2
2M + Ω2

3M . (90)

We now use the fact that the term $(t) is bounded as shown above for all t ≥ t0 ≥ 0 and that limt→∞ qe(t) = 0 as
proved above. Moreover, the limit limt→∞ qe(t) = 0 implies that limt→∞H(qe(t),αq(t)) = 0, see the expression of
H(qe,αq) in (33). The limit limt→∞H(qe(t),αq(t)) = 0 in turn implies that limt→∞[$(t)H(qe(t),αq(t))e3] =
0. Integrating both sides of (89) and utilizing the limit limt→∞$(t)H(qe(t),αq(t))e3 = 0 show that V2(t) or V ∗2 (t)
is bounded for all t ≥ t0 ≥ 0. Boundedness of V2(t) or V ∗2 (t) implies boundedness of η1e(t), v1e(t), and v1(t) (see
(17) and note that αv1 is bounded for all t ≥ t0 ≥ 0). In addition, by construction all the signals η1e(t), v1e(t), and
v1(t) are continuous. The aforementioned arguments imply from (88) and (89) that limt→∞

(
γ σ

T (η1e(t))K1σ(η1e(t))
∆(v1(t)) +

vT1e(t)K2σ(v1e(t))
)

= 0, which in turn means that limt→∞(η1e(t),v1e(t)) = 0 since v1(t) is bounded. Asymptotic
convergence of ψ(t)− ψd(t) to zero is resulted from that of qe(t) to zero.

We now show that the closed loop system (65) is locally exponentially stable at the origin. Since we have
already asymptotic stability of the close loop system (65), there exists a time T ≥ t0 such that ∆(v1(t)) ≤ ∆(η̇1d(t)+
ε0, σ(η1e(t)) ≈ η1e(t), and σ(v1e(t)) ≈ v1e(t), for all t ≥ T . From these observations, local exponential stability
of the closed loop system (65) follows.

Finally, boundedness of all other aircraft’s states follows directly from the proposed smooth control design
and boundedness of η1e(t), v1e(t), and the reference trajectories and their derivatives. �

C PROOF OF LEMMA 5.1
To prove the first inequality of (74) in Lemma 5..1, we differentiate the disturbance observer error de along

the solutions of (73) to obtain
ḋe = −Kde + ḋ. (91)

Consider the function

Ve =
1

2
‖de‖2, (92)

whose derivative along the solutions of (91) satisfies

V̇e = −dTeKde + dTe ḋ,

≤ −λm(K)Ve +
d2

1M

2λm(K)
,

(93)
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where d1M is defined in Assumption 5..1.1. The last inequality of (93) can be written as

d
dt

(
Ve −

d2
1M

2λ2
m(K)

)
≤ −λm(K)

(
Ve −

d2
1M

2λ2
m(K)

)
. (94)

Solving (94) gives

Ve(t) ≤
(
Ve(t0)− d2

1M

2λ2
m(K)

)
e−λm(K)(t−t0) +

d2
1M

2λ2
m(K)

, ∀ t ≥ t0 ≥ 0, (95)

which gives the first inequality of (74) by using the definition of Ve in (92) and the initial condition ξ(t0) defined in
the third equation of (73) implies that d̂(t0) = 0.

To prove the second inequality of (74), we differentiate the disturbance observer d̂ defined in the first equation
of (73) along the solutions of the second equation of (73) and (72) to obtain

˙̂
d = −Kd̂−Kd. (96)

Consider the following function

V =
1

2
‖d̂‖2, (97)

whose derivative along the solutions of (96) satisfies

V̇ = −d̂TKd̂+ d̂TKd,

≤ −λm(K)V +
λ2
M (K)

2λm(K)
d2
M ,

(98)

where dM is defined in Assumption 5..1.1. Solving the last inequality of (98) gives

V (t) ≤
(
V (t0)− λ2

M (K)

2λ2
m(K)

d2
M

)
e−λm(K)(t−t0) +

λ2
M (K)

2λ2
m(K)

d2
M , ∀ t ≥ t0 ≥ 0, (99)

The initial condition ξ(t0) defined in the third equation of (73) implies that d̂(t0) = 0, which results in V (t0) = 0.
Substituting V (t0) = 0 into (99) and using the definition of V in (97) result in the second inequality of (74). �
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