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 This paper presents a distributed receding horizon coverage control algorithm 
to control a group of mobile robots having linear dynamics with the 
assumption that the robot dynamics are decoupled from each other. The 
objective of the coverage algorithm considered here is to maximize the 
detection of the occurrence of the events. First the authors introduce a 
centralized receding horizon coverage control and then they introduce a 
distributed version of it. To avoid the common disadvantages that are 
associated with the centralized approach, the problem is then decomposed 
into several RHCC problems, each associated with a particular robot, that are 
solved using distributed techniques. In order to solve each RHCC, each robot 
needs to know the trajectories of its neighbors during the optimization time 
interval. Since this information is not available, an algorithm is presented to 
estimate the trajectory of the neighboring robots. To minimize the estimation 
error, a compatibility constraint, which is also a key requirement in the 
closed-loop stability analysis, is considered. Moreover, the proof of the 
close-loop stability of this distributed version is provided and shows that the 
location of the robots will indeed converge to the centroids of a Voronoi 
partition. Simulation results validate the algorithm and the convergence of 
the robots to the centroidal Voronoi configuration. 
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1. INTRODUCTION 

Application of multi-agent systems for controlling a group of robots has gained a significant 
attention in recent years due to considerable advancement in computer technology. Researchers have shown 
that multiple robots could potentially accomplish a task more efficiently than a single robot. In a multi-agent 
system, several autonomous agents are simultaneously coordinated and controlled in order to achieve a 
common system objective. The underlying assumption is that in multi-agent systems, the agents are 
distributed in a predetermined fashion and each agent will act autonomously while exchanging local 
information with neighboring agents [1], [2]. Furthermore, it has been established that the distributed control 
approach among autonomous agents provides a better scalability and improved tractability than centralized 
approaches. 

With the progresses made in real-time optimization-based control, some researchers have suggested 
new distributed control algorithms in an attempt to manipulate constraints in real-time [3], [4]. One major 
factor for consideration in developing reliable distributed control algorithms is location of nodes for the robot 
network in the mission space. This is referred to as the coverage control or active sensing problem [5], [6].  

The deployment location of the mobile robot must provide for maximum information retrieval, 
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satisfactory communication level, and effective energy consumption [7]. Similar to challenges in facility 
location optimization such as static problems, an offline scheme can be implemented to determine coverage 
control by deploying the robots in an optimal location that will not require mobility. As an alternative, in a 
coordinated-movement dynamic scheme, the mobile robots can be deployed into a geographical area with the 
highest information density. However, due to similarities between facility location and coverage control 
optimization, issues regarding robot deployment have been studied using facility location optimization [5].  

It has been determined that the level of sensitivity and the domain of coverage of mobile robots in 
their deployment location is essential to the overall efficiency of the system network. It involves a 
comprehensive coverage metric encompassing an optimized sensing performance and placements of mobile 
robots [5], [8]. Researchers have used Voronoi partitioning of the region model to reduce challenges of the 
locational optimization [9].  The focus of the original  algorithm, for an optimal mobile robot placement, was 
on coordination and control of mobile robots, leading to the development of more enhanced formulations and 
coordination algorithms by other scholars [5], [8]. As such, during recent years, formulating a cooperative 
control design among distributed agents assigned to a specific task that can navigate autonomously without 
collision has received significant attentions [1], [10].Consequently, the concept of coordination and control 
algorithms for networked dynamic systems has become a central focus for researchers in systems and control 
arena, drawing overwhelming attentions [5], [11]. For example, Dunbara and his colleagues have suggested a 
design for formation pattern in a multi-agent system based on receding horizon control [12]. Meguerdchian 
and his colleagues have purported centroidal Voronoi configuration as a solution to problems associated with 
area of coverage in a way that clarifies the issue of coverage control. They have presented their algorithms in 
a centralized manner as a practical approach and as having a possibility for application [16]. Cortes and his 
associates [5] have suggested a decentralized coverage control algorithm for multi-robots in an area in a way 
that the mission space is partitioned in Voronoi cells.  From this perspective, which is considered in this 
paper, they have discussed sensory control issue which in fact is the problem of locational optimization for 
sensors. 

While significant results have been achieved, there is still room for new ideas and further 
improvements. This paper presents a distributed receding horizon coverage control (DRHCC) algorithm for 
controlling a group of mobile robots having linear dynamics with the assumption that the robot dynamics are 
decoupled from each other. The algorithm will provide for maximum event detection through confluence of 
robots position to a centroidal Voronoi Configuration. The proposed algorithm ensures enhanced coverage 
and stability. 

Concepts exploited for theoretical framework include Locational optimization, receding horizon 
control, distributed coverage control, centroidal Voronoi partitions and are briefly discussed in the next 
section. Centralized receding horizon coverage control (CRHCC) approach for a group of linear mobile 
robots is presented in section 3. Using the results of this section, the distributed receding horizon coverage 
control (DRHCC) algorithm is given in section 4. In section 5, stability analysis of closed-loop system is 
studied and it is proved that by using suggested DRHCC algorithm, the closed-loop system is stable and will 
converge to centroidal Voronoi configuration. Section 6 presents simulation results that validate the 
algorithm and the convergence of the agents to the desired configuration, and finally, section 7 summarizes 
the main results of this paper. 
 
 
2. BACKGROUNDS 

 
2.1. Locational Optimization 

This section presents some facts regarding the method used to describe coverage control for mobile 
sensing network in [5] and in the framework of locational optimization presented in [9] which underpins 
coverage algorithms depicted in Voronoi diagram. 

Assume that S  be a convex space in 2  and  1,..., nP p p be the location of n mobile robots, i.e. ip S
denotes ith robot position. Furthermore, assume that movement of each robot is confined in S  and 

 1,..., nW W W
 
is a tessellation of S  such that ( ) ( )i jI W I W  . (.)I denotes interior space of each iW

and 
1

n
ii

W S


 . So, it is supposed that each agent i is only responsible to cover its domain iW . To obtain 

the probability of an event occurring at a point in S, the mapping : S   is defined. Note that in this 

sense,  is the distribution density function. As robot i moves further away from any given point s  inside the 

mission space S , its sensing performance at point s taken from ith sensor located at i ip W   reduces with the 
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distance ( , )i id s p s p   because of noise and loss of resolution. This reduction is defined by function

:g    . As a measurement for system's performance, coverage cost function is described as  

1 1

( , ) ( , ) ( ( , )) ( ) ,

i

n n

i i i
i i W

J P W J p W g d s p s ds
 

     (1) 

 
where J is a differentiable function. Note that the cost function J  must be minimized in regards to location 
of robots and partition of the space. 
 
2.2. Centroidal Voronoi Configuration 

A collection of points  1,..., nP p p  generate Voronoi Diagram which is defined as 

1{ ,..., }nV V V  and iV that commonly is referred to as Voronoi domain or Voronoi cell associated with point

ip are defined by 

 

 : ( , ) ( , ),i i jV s S d s p d s p j i      

 
The above definition is commonly used to describe Voronoi partition [5], [9]. Voronoi partitioning is one of 
the important tools in localization optimization theory.  
 
Definition 1 [13]. For robot i  all neighboring Voronoi robots (meaning i ) are described as collection of 

robots with a shared Voronoi cell border.  Based on definition of Voronoi partitioning we have 
 

1,...,min ( ( , )) ( ( , ))i n i ig d s p g d s p 
 

 
For each   js V accordingly,  

 

1,...,( , ( )) min ( ( , )) ( )i n i

S

J P V P g d s p s ds   (2) 

 
To continue, the two results presented in [5] are reviewed. 
 
Proposition 1 [5]. One of the necessary conditions to minimize (1) is that W  partitioning must be equal to 
Voronoi configuration ( )V P .  

According to (2) 
 

( ) ( , )
( ( , )) ( )

i

V i i
i

Vi i i

J P J p V
g d s p s ds

p p p
  

 
    

 
So, partial derivative of VJ with respect to i th robot is only associated with position of the robot itself and its 

neighbors.  Next, we discuss some of the concepts associated with Voronoi diagram. In [5], the (generalized) 
mass and first moment (not normalized) and center of Voronoi cell are defined as 
 

( )
( ) ,   ( ) ,   

( )

i i

i i i
i i i

i

V V
V V V

V V V
V

s s dsL
M s ds L s s ds C

M s ds


 


   


  

 (3) 

 

Using the above definition and proposition and letting
1

2 ig s p  , we have  
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( )
( ( , )) ( ) ( )

i i
i

V
i V i V

Vi i

J P
g d s p s ds M p C

p p
 

  
   (4) 

 
Thus, the local minimum points for the locational optimization cost function VJ  are centroids of Voronoi 

cells. In other words, to minimize VJ , each robot must not only be a generator point of its own Voronoi cell 

but also must be at the center of the cell [5]. Accordingly, the critical partitions and points for J  are called 
centroidal Voronoi partitions. We will refer to a robots’ configuration as a centroidal Voronoi configuration 
if it gives rise to a centroidal Voronoi partition [5]. 
 
2.3. Receding Horizon Control (RHC) 

RHC is an optimization approach that can be used for systems, even if some constraints on states 
and inputs exist. In RHC, the current control law is obtained by solving a finite horizon optimal problem at 
each sampling instant. Each optimization generates an open-loop optimal control trajectory, and the first 
portion of this optimal control trajectory is applied to system until next sampling time [4], [15]. 

The contribution of this paper is using RHC (the state space-based model predictive control) in 
order to coverage an environment. Therefore, first we suggest centralized receding horizon coverage control 
and then this centralized approach will be extended to a distributed approach. 

In the sections that follow, the RHC approach is used to drive a group of n  mobile robots at 
centroidal Voronoi configuration. 
 
 
3. CENTRALIZED RECEDING HORIZON COVERAGE CONTROL (CRHCC) 

The cooperative receding horizon coverage control approach for multiple linear mobile robots is 
proposed in this section. The objective is to asymptotically force a group of n linear mobile robots toward 
centroidal Voronoi configuration in a cooperative manner using receding horizon control. To do so, let 

1( ) ( ,..., )nP t p p be a n-vector whose elements are robots’ position, i.e. ( ) ( ( ), ( ))i i ip t x t y t , and 

1
( ,..., )

nV V VC C C be a vector of  Voronoi cells centroids. The overall system dynamic can be described as 

 

( ) ( ), 0,P t u t t   (5)  

 

where (0)P is known and 2( ) nP t   and 2( ) nu t  are state and input vectors respectively. It is assumed 

that there exist some constraints on state and input, i.e. ( ) nP t   and ( ) nu t u  where n  and nu are the 

state and input constraints sets respectively. 
 

Assumption 1.  
u is a compact and a connected set that contains origin in its interior 
Each robot can measure all of its states. 
The computational time is negligible 

 
The coverage algorithm proposed in this paper is based on Voronoi diagram. Aurenhammer has 

shown that the dual of Voronoi diagram is Delaunay triangulation which lies under graph theory concept 
[13]. To proceed, the coverage problem is investigated using graph theory. 

 
Lemma 1 ([13] Lemma 2.4). Two points of P in Voronoi diagram are connected with a Delaunay edge, iff 
their corresponding Voronoi cells are adjacent.  
 
These two points (or robots) are called neighbors. 
By drawing robots’ Voronoi diagram and its corresponding Delaunay graph, the set of robots’ positions can 
be shown with a graph where its vertexes are robots position and its edges are connecting segment between 
any two neighboring robots. We denote the coverage graph topology by  ( , ), 1,..., ,G V E V n E V V    . 

Each edge in graph is illustrated with an ordered pair ( , )i j E , where ,i j are any two neighboring robots. 

Our coverage graph is assumed to be undirected. Hence, ( , ) ( , )i j j i . Robots ,i j  are called neighbors if in 

the coverage graph ( , )i j E . The set of neighbors of ith robot is denoted by i V  . Each element of E is 
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denoted by ie .  Accordingly,  1,..., ME e e , where M is the number of Delaunay edges. 

To proceed, we need to define the proposed notion of "coverage vector" and "coverage matrix". Before that 
we define the desired connecting vector between any two neighbors in a coverage graph, denoted by 

2
ijd   as 

 

j iij V Vd C C 
 (6) 

 
This vector has the following property 
 

ij jid d 
 (7) 

 
Definition 2. "coverage vector" and "coverage matrix": the "coverage vector" denoted by COV is 

defined as 
 

2( )
1 1( ,..., ,..., , ,..., ) ,M n

l M M M nCOV cov cov cov cov cov 
    

 
where 

 
, 1,..., , ( , )l i j ijcov p p d l M i j E    

 (8) 
 
and                
 

1,...,
kM k k Vcov p C k n   

 (9) 
 
The robots will be in centroidal Voronoi configuration, namely VP C , when 0COV  . Hence, we can write 

the linear mapping from P  to COV  as: 
 

,COV TP d   (10) 
 

where (..., ,..., ,...)
kij Vd d C  ,. 1,..., ,  for all ( , )k n i j E  . 

We call T as " coverage matrix". 
From definition of the coverage vector, we know that  
 

if then 0VCOV TP d P C COV      
 
Therefore 
 

0V VTC d d TC      (11) 
 
Substitution of (11) into (10) yields: 
  

( )V VCOV TP TC T P C     (12) 
 
Lemma 2. The coverage matrix T used in (10) has full rank and it is equal to dim( ) 2P n . 

Proof. Using the definition of matrix T, one can verify that it can be written as 
T

T
T

 
   

, where T  is an 

identity matrix of size 2n . Therefore the coverage matrix T in (10) has full rank equal to dim( ) 2P n . □ 

Matrix T  given in the above formulation is a generalized incidence matrix of the coverage graph and can be 
obtained from the incidence matrix of the coverage graph by multiplying every element of that matrix by 2I
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where 2I  is an identity matrix of size 2. Furthermore, since our coverage graph is a Delaunay graph, it is 

connected [13], and its generalized incidence matrix has a rank equal to 2( 1)n  . 

 
Definition 3. The centralized receding horizon coverage control cost function is defined as: 
 

2 2

( , )

( ( ), (.), ) [ ( ) ( ) ( )
pt h

p i j ij V
i j Et

H P t u h p p d P C    




       

22( ) ] ( , ( )) ,p Vu d P t h P t C       (13) 

 
where , ,   are positive weighting constants. The first and second terms in (13) are tracking terms, the third 

term is a term for minimizing control effort, and the last term is called terminal control cost.  
 
Proposition 2. Using the above definitions and Lemma, we can describe the CRHCC cost function (13) 
designed to drive a group of n  robots to a centroidal Voronoi configuration by a cost function given by: 
 

22 2( ( ), (.), ) ( ; ( )) ( ) ( ; ( ))
pt h

p V p VRQ G
t

H P t u h P P t C u d P t h P t C  


       (14) 

 
Proof. As it has been proved in [13], a Delaunay graph is connected. Furthermore, as stated before, the 
coverage graph considered in this paper is Delaunay and thus it is a connected graph. If the coverage graph 
was not connected, it could be separated to at least two sub-graphs.  Moreover, the cost function would be 
separated in to more than one coupled cost function. Since by Lemma 2 the coverage matrix has full rank, 

TT T is a positive definite matrix and hence using (12) one can get 
 

22 (( ) ( )) T
T T

V V V T T
COV P C T T P C P C      (15) 

 

We denote ,TQ T T G I    and R I (where I is an identity matrix). Since , ,    are positive, the 

matrices Q, G, and R are positive definite matrices, and considering 
1
,...,

nV V VC C C , (13) can be rewritten 

as: 
 

22 2( ( ), (.), ) ( ; ( )) ( ) ( ; ( ))
pt h

p V p VRQ G
t

H P t u h P P t C u d P t h P t C  


       

 
which is indeed equal to (14). 
Now by using the above concepts, the CRHCC problem can be stated as follows: 

 
Problem 1. CRHCC problem:  

Find *

(.)
( ( ), ) min ( ( ), (.), ),p p

u
H P t h H P t u h with 

22 2( ( ), (.), ) ( ; ( )) ( ) ( ; ( ))
pt h

p V p VRQ G
t

H P t u h P P t C u d P t h P t C  


       

subject to: 
 

( ) ( )

( ) , ,

( ; ( ))
p

P u

u t t h

P P t S

u
 
 



      
  


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 22( ; ( )) ( ) : : , 0n
p V G

P t h P t P P C          (16) 

 
Note that (16) represents the terminal constraint [10], [12]. Assume that the first segment of the optimal 
control problem is solved at time instant 0t  , ch is the receding horizon update period, and the closed loop 

system that we wish to stabilize at CV is 
*

0( ) ( ), ,P u t   
 (17) 

 

 where *( ; ( ))u P t , , pt t h     , is the open-loop optimal solution of Problem 1. This optimal control 

solution is applied to the system until ct h , i.e. the applied control to the system in the time interval

 , ct t h   , 0 c ph h  is  * *( ) ( ; ( )), , cu u P t t t h     . The open-loop optimal state trajectory is 

denoted as *( ; ( ))P P t . 

Based on the results of CRHCC obtained in this section, a DRHCC algorithm is proposed in the next section. 
 
 
4. DISTRIBUTED RECEDINH HORIZON COVERAGE CONTROL 

In DRHCC approach the objective is to force a group of n robots to centroidal Voronoi 
configuration in a distributed manner using RHC. In CRHCC approach, the control law requires centralized 
information and computations. The DRHCC approach proposed in this section, avoids the disadvantages 
associated with CRHCC approach. 

Let 2
ip  and 2

iu   be state and control input of the thi robot, where 1,...,i n . It is assumed that robots’ 

dynamics are decoupled from each other and hence their dynamics can be written as:  
 

( ) ( ), 0, (0)  giveni i ip t u t t p 
 (18)    

 
To achieve the desired cost function, the coupling that is inherent with the centralized approach is eliminated 
by defining n different costs, one for each robot, and only the connections between any given robot and its 
neighbors are present. To facilitate the results, the terminal constraint and the terminal cost are assumed to be 
decoupled, i.e. 1( ,..., )nG diag G G . Furthermore, in addition to previous constraints, a compatibility 

constraint is added to ensure that each robot does not move away too far from the trajectory expected by its 
neighbors [12]. It will be explained later. It is also assumed that ,p ch h are identical for all robots. 

Considering (5) and defining 1( ) ( ,..., )nP t p p and 1( ,..., )nu u u , the overall system dynamic can be 

decomposed into n sub-systems having the dynamics given by (18). Accordingly, the objective is to design a 
DRHCC for each robot that drives the robot to the centroid of its own cell in centroidal Voronoi 
configuration, while cooperating with its neighbors.  
 
Definition 4. The DRHCC cost function for each robot with the objective of reaching its cell’s centroid in 
centroidal Voronoi configuration in a cooperative way with its neighbors, is defined as: 
 

22
( ( ), ( ), (.), ) ( ) ( ) ( )

2

p

i

i

t h

i i j i p i j ij i V
jt

H p t p t u h p p d p C
    





       

22( ) ( , ( ))
i

i
i i p i V G

u d P t h p t C       (19) 

 
In the newly considered system, the state and the control constraints are separated for each robot, i.e. 

2( )ip t  and 2( )iu t u  .  

Given 1( ,..., )nR diag R R , control cost can be rewritten as 22

1
i

n

iR R
i

u u


 , where each iR I is a 
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positive definite matrix. To proceed further, the notions of “distributed coverage vector” and “distributed 
coverage matrix” are needed. Before that, some notations must be defined. 

As stated in section 3, iN is the set that contains the neighbors of the thi robot neighbors. Therefore, there 

exists a Delaunay edge between the robot and its neighbors. Let (..., ,...)i jp p   and (..., ,...)
i jV VC C


  

where ij N , denote the state and centroid vectors of the neighbors of robot i respectively. Now for each 

robot, i, define the following vector: 

1
(..., ,..., )

i

i i i
l N

cov cov cov  , 

where 
 

1,..., ,i
l i j ij i icov p p d l N j N       (20) 

 

1 ii

i
i VN

cov p C    (21)  

and iN  is the number of elements in Ni . Let the linear mapping from  ,i
i iP p p  to icov be written as 

 

,i i i icov T P d   (22)  
 
where 
 

 ..., ,..., ,
i

i
ij V id d C j N    (23) 

 
We can now state the following definitions: 
 
Definition 5. "Distributed coverage vector" and "distributed coverage matrix":   
For each ith robot, the "distributed coverage vector" is defined as: 
 

1
(..., ,..., )

i

i i i
l N

cov cov cov  , 

 
where 

 
1

,   1,...,
2

i i
l l icov cov l N   (24) 

 
and 
 

1 1i i

i i
N N

cov cov   (25)  

 

The "distributed coverage matrix" is defined as matrix iT in the following equation 
 

,i i i icov T P d   (26)  
 

where 
1

..., ,...,
2 i

i
ij V id d C j N    

 
and  ,i

i iP p p ..  

Since 1( ,..., )nQ diag Q Q , the term ½ is added in (24) in order to satisfy the following equation: 

 

 
2

22

1 1

, ,i

i i
ii

i

n n
i V i i i

V V V V VQ Qi Vi iQ

p C
P C P C C C C

p C 
 


    

   
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Note that if robot i and its neighbors be located at their centroids in centroidal Voronoi configuration, i.e. 
i i

VP C , then (20), (21) and therefore (24), (25) will be equal to zero. Hence 

 

0i i i i i i i i i i i
V V VT C d d T C cov T P T C          ( )i i i i

Vcov T P C   (27) 

 

Similar to centralized case, it can be proved that The distributed coverage matrix iT in (27) has full rank and 
it is equal to dim( ) 2p  . 

 
Proposition 3. The cost function given by (19) can be rewritten as 
 

2 2( ( ), (.), ) ( ( ) ( ) )
p

ii

t h
i i i

i p V i RQ
t

H P t u h p C u d  


   
2

( ; ( ))
i

i
i p V G

p t h p t C   (28)  

 
and 

 

1

( ( ), (.), ) ( ( ), (.). ),
n

i i
i p p

i

H P t u h H P t u h


   

 
where H is the CRHCC cost function.           
Proof. Using (27), it can be seen that 

 
2 2

i iT
i i i

V
T T

cov P C 
.   

 

Since 1( ,..., )nR diag R R and 1( ,..., )nG diag G G , then by defining i iT
iQ T T one can rewrite (19) as: 

 

2 2( ( ), (.), ) ( ( ) ( ) )
p

ii

t h
i i i

i p V i RQ
t

H P t u h p C u d  


   
2

( ; ( ))
i

i
i p V G

p t h p t C   

 
This is indeed (28) which is useful in stability analysis. Now, according to definitions 2 -5, it is concluded 
that 
 

1

( ( ), (.), ) ( ( ), (.). )
n

i i
i p p

i

H P t u h H P t u h


 , 

 
i.e. the sum of n  distributed cost functions is equivalent to centralized cost function.  
 
Now suppose that n DRHCC optimal problems, one corresponding to each robot, are all solved at a common 
time instant called “update time”, denoted by 0k ct t h k  , {0,1,...}k  . As stated in (19), (28), for each cost 

function, there is a term that contains connection between the corresponding robot and its neighbors. So, in 
every update time, when the local optimal problems are solved, each robot requires to know the state 
trajectories of all its neighbors over time interval [ , ]k k pt t h . But, such information doesn’t exist at instant

kt .Therefore each robot must estimate some state trajectories for its neighbors at [ , ]k k pt t h  and then solves 

its optimal control problem. The trajectories that each robot estimates for its neighbors are called estimated 
trajectories. Since each robot is assumed to have the information about the dynamics of its neighbors, an 
estimated control (defined shortly) is obtained from which the state trajectories are derived. To ensure 
compatibility between the actual and the estimated trajectories, an additional constraint called “compatibility 
constraint” is added to DRHCC problem of each robot. 
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Definition 6. Estimated control 

At every time interval ,k k pt t h     , the estimated control for each robot is defined as 

*
1

ˆ ( ; ( )) 0;   ( )

ˆ ( ; ( )) ( ; ( ));

i i k k V

i i k i i k

u p t if P t C

Otherwiseu p t u p t



  

 



 

 
 The actual and the estimated state trajectories are denoted by (.; ( ))i i kp p t  and ˆ (.; ( ))i i kp p t  respectively. 

Note  that ˆ ( ; ( )) ( ; ( )) ( )i k i k i k i k i kp t p t p t p t p t  , 1,...,i n . 

The DRHCC problem can now be stated as follows.  
 

Problem 2. With a given fixed update period time  0,c ph h and a optimization period time ph , for every 

1,...,i n and at any sampling time kt and with given ˆ ˆ( , ( )), ( ), ( ), ( ; ( ))i i k i k i k i i ku p t p t p t u p t     at

[ , ]k k pt t h    find 

 
*

(.)
( ( ), ( ), ) min ( ( ), (.; ( ), ),i

i i k i k p i k i i k p
u

H p t p t h H p t u p t h   

 
where   

 

22 2

2

( ( ), (.), ) ( ( ) ( ) ( ) ( ) )
2

( , ( )) ,

p

i

i

i
i

t h
i

i i p i j ij i V i
jt

i p i V G

H p t u h p p d p C u dt

P t h p t C

      




      

 


    

 
 subject to the following 

( ; ( )) ( )i i k ip p t u  , 

ˆ ˆ( ; ( )) ( ),j j k j ip p t u j N   , 

( ; ( ))i i ku p t u  , ( ; ( ))i i kp p t  , 

 
2ˆ( ; ( )) ( ; ( )) ,i i k i i k cp p t p p t h    (0, )    (29)  

 
( ; ( )) ( )i k p i k i ip t h p t   ,  

where ,k k pt t h     ,  

and  
 

 22( ) : : , 0
i

i
i i i i V i iG

p R p C          (30) 

 

where 2 0ch   . 

(29) is called compatibility constraint and (30) is target or terminal set. The optimal solution for each 

DRHCC problem is denoted by *( ; ( )), ,i i k k k pu p t t t h       and the closed-loop system where we wish to 

stabilize it, is 
 

*( ) ( )), 0,P u     (31) 

 

 where * * *
1 1( ; ( )) ( ( ; ( )),..., ( ; ( )))k k n n ku P t u p t u p t   . The optimal state trajectory for thi robot is denoted by
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*( ; ( )),i i kp p t ,k k pt t h     .  

The augmented optimal state trajectory for 

 ,k k pt t h     is * * *
1 1( ; ( )) ( ( ; ( )),..., ( ; ( )))k k n n kP P t p p t p p t   . Note that the thi robot's optimal control, 

i.e. *( ; ( )),i i ku p t is dependent on its initial state, ( )i kp t , and the initial states of its neighbors. In DRHCC 

problem, initialization is more difficult. As stated before, each robot has an estimated trajectory at 0t . To 

solve the optimal problem corresponding to a robot, the estimated control information of its neighbors is 
needed. Since the estimated control of each step is assumed to be the optimal control that is obtained in the 
previous step, and since prior to 0t  no optimal problem has been solved, one must define an initialization 

method to obtain the estimated control. The time instant that this initialization occurs is denoted by 0 ct h . 

Algorithm 1. (Initial setting method): at time instant 0 ct h , we solve Problem 2 with initial state 

0( )i
cp t h and with 0ˆ ( ; ( )) 0i i cu p t h   for all 0 0,c c pt h t h h         and   .  

The optimal control that is obtained by solving this problem with the above conditions is the estimated 

control for the time interval 0 0, .pt t h       implies that the compatibility constraint is not important 

prior to t0. State and control trajectories that are obtained at 0 ct h over interval 0 0,c c pt h t h h         are 

denoted by *
0( ; ( ))i i cp p t h  and *

0( ; ( ))i i cu p t h  . This optimal control is applied to ith robot over

 0 0,ct h t .  

The proposed DRHCC algorithm is given in Table 1. Some of the advantages of this algorithm can 
be listed as follows: 

 
General: As a general rule, the RHC is the only approach in control theory that can employ generic 

dynamics and generic constraints [4]. As a result, the algorithm can be extended to other systems such as 
nonlinear systems (holonomic and non-holonomic) and it can handle any constraint imposed on the 
system.  

Near optimal: The optimal position for robots, when maximizing the event detections in Voronoi based 
coverage, are centroids of Voronoi cells in centroidal Voronoi configuration. Since, RHC is an 
optimization approach that yields an optimal control, the suggested algorithm is near optimal in a sense 
that it will force the robots to converge to centroids of Voronoi cells using an optimal control input. 

Adaptive: Since the algorithm determines the coverage graph at each update instant, it can accept any 
possible switching in coverage graph at that particular update instant. As a result, it can address any 
possible change in the network topology such as robot failure or departure. 

Distributed: The DRHCC algorithm is distributed in the sense that each robot computes a control trajectory 
for itself based on its own and its neighbors information. 

Scalable: Scalability is one of the main advantages of distributed approach over centralized case [4], [5]. In a 
distributed approach, every robot just needs the information about its neighbors and the average number 
of Voronoi neighbors in Voronoi diagram is less than 6 [13]. This makes the DRHCC algorithm 
scalable. This property of the DRHCC algorithm will be shown by an example in section 6.   

Robust:  Robustness is one of the main advantages of distributed approaches [5]. 
Collision avoidance: The mission space is assumed to be convex. Therefore each Voronoi cell is convex and 

contains its own center. Since in DRHCC approach each robot moves towards its own center, no robot 
can leave its Voronoi cell and we know that ( ) ( )i jI V I V   . Hence assuming that the robots sizes are 

small, there is no collision between robots. 
Stable: Section 5 
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Table 1. Distributed receding horizon coverage control algorithm 
Name: DRHCC algorithm 
Goal: Asymptotically drive a group of n mobile robots toward centroidal Voronoi 
configuration. 

At instant 0 ct h every robot: 

A1- senses its position and transmits the information about its position to the neighbors and 
receives its neighbor’s position 

A2- computes its Voronoi region 0( )i cV t h  and centroid of that according to (3) 

A3- follows the initial setting procedure given in Algorithm 1 

At every update instant ,kt k N each robot: 

B1- senses its own and its neighbors’ position (or receives neighbors position). 

B2- computes its Voronoi region ( )i kV t . 

B3- computes centroid of its cell according to (3) 
B4- transmits the information about its Voronoi center to each of its neighbor in the system 

and retrieves the same information from its neighbors 
B5- computes its own  and its neighbors estimated trajectory using (18) 

B6- computes distributed optimal control trajectory
*( ; ( ))i i ku p t over interval

[ , ]k k pt t h    using Problem 2 

Over every interval 1[ , )k kt t , each robot: 

C1- applies the distributed optimal control trajectory that has been obtained at 1kt   

C2- computes its estimated control for [ , ]k k pt t h  according to Definition 6 

C3- transmits its estimated control that was computed in C2 to every neighbors and receives 
their estimated control 

 
 
5. STABILITY ANALYSIS 

The stabilization of the closed-loop system (31) is investigated in this section. As stated in section 3, 
the overall cost function for the system is given by (14) where 
 

* * *

1

( ( ), ) ( ( ), ( ), )
n

k p i i k i k p
i

H P t h H p t p t h


  (32) 

 

Proposition 4. All solutions to the equation * *( ) ( )), 0P u     which *
VP C  are equilibriums of the 

system (31). 
Proof. If each robot is located at VC at time 0 ct h , i.e. 0( )c VP t h C  , then the optimal solution for 

Problem 2 over time interval 0 0[ , ]c c pt h t h h    
 
is *( , ) 0Vu C  . On the other hand, using systems 

dynamics given by (5), one can write ( ) 0P t  . Furthermore, since every optimal control is applied to the 

system until next update time, the estimated control is equal to zero at 0t , i.e. 0ˆ (.; ( )) 0i iu p t   and hence 

0( ) VP t C . Therefore, over interval [ , ]k k pt t h   , *( , ( )) 0ku P t   and hence all solutions to the 

equation * *( ) ( )), 0P u     which *
VP C  are equilibriums of the system (31).  

                                 □ 
Theorem 1. Based on DRHCC algorithm given in Table 1, the closed loop system (31) converges to 
centroidal Voronoi configuration and VC is an asymptotically stable equilibrium point for the closed-loop 

system, with   as its region of attraction. 
Proof. Since the mission space is assumed to be convex, each Voronoi cell is also convex and contains its 
centroid in its interior. Consequently, each robot always moves inside its cell and therefore never leaves the 
mission space S . Assuming Problem 2 is feasible at initialization, 0( ; ( ))i i cu p t h   is an admissible control 

over 0 0[ , ]c c pt h t h h     . Presuming that all robots are located inside S  at 0 ct h , then at times 

0 0c c c pt h h t h h       the state and control trajectories are admissible and as a result for all time 
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instants after initialization, they are admissible as well. Therefore,  is a positively invariant set meaning 

that the closed-loop state trajectory for all 0 ct t h  is contained in the interior of  . 

Now let *( ( ), )k pV H P t h  where V is a Lyapunov function. From (28) and (32) and given the fact that 

0iG  , one can deduce that *( ( ), )k pH P t h is a non-negative function. If *( ( ), ) 0k pH P t h  , then based on 

(28) and (32) for every robot 
2*( , ( )) 0

i
i

i k p i k V
G

p t h p t C     

and 
 

2* ˆ( , ( )) ( , ( ))
2

k p

ik

t h

i i k j j k ij
j Nt

p p t p p t d
  





  
 

2 2* *( , ( )) ( , ( )) 0
ii i k V i i kp p t C u p t d        

 
Since the function under the integral in (28) is piecewise continuous and non-negative over time interval
[ , ]k k pt t h , one can write 

 
2 2* *ˆ( , ( )) ( , ( )) ( , ( ))

i

i

i i k j j k ij i i k V
j N

p p t p p t d p p t C   


   
2*( , ( )) 0i i ku p t   , ,k k pt t h       

 

Hence, *( , ( )) 0ku P t   over the interval [ , ]k k pt t h   , and given the fact that iG  is a positive definite 

matrix then *( , ( ))
ii k p i k Vp t h p t C  . Note that the system dynamics given by (5) is time invariant and 

therefore with initial state ( )k p VP t h C 
 

and control ( ) 0, , ,k p ku t h t        one can write 

( ) VP C  . Therefore, over interval [ , ]k k pt t h   , the optimal closed-loop state is *( ; ( ))k VP P t C  . 

Furthermore, with ( )k VP t C , using Definition 6 over time interval [ , ]k k pt t h   , the estimated control is 

ˆ ( , ( )) 0i i ku p t  , and hence ˆ ( ; ( ))
ii i k Vp p t C  . Since, the DRHCC cost function is denoted as 

 

2 2* *

2 2* *

ˆ( , ( )) ( , ( )) ( , ( ))
2

        ( , ( )) ( , ( ))

k p

i

ik

i

t h

i i k j j k ij i i k V
j Nt

i i k i k p i k V

p p t q q t d p p t C

u p t d p t h p t C

    

   





    

  


 

 

and because ( )
ii k Vp t C , the optimal solution to Problem 2, over time interval [ , ]k k pt t h   , and for every 

robot are *( ; ( )) 0i i ku p t  and *( ; ( ))
ii i k Vp p t C  . Hence, since for every robot * 0iH  , based on Proposition 

3 the total cost is *( ( ), ) 0k pH P t h  . Consequently, ( ( ), ) 0k pH P t h   everywhere except at ( )k VP t C  

where *( ( ), ) 0.k pH P t h   Therefore *H is positive definite. Since *H satisfies the following 

 

2*

1

ˆ( ( ), ) ( , ( )) ( , ( ))
2

k p

ik

t hn

k p i i k j j k ij
i j Nt

H P t h p p t p p t d
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


 

      

2 2* *( , ( )) ( , ( ))
ii i k V i i kp p t C u p t d      

2*( , ( ))
i

i
i k p i k V

G
p t h p t C   (33) 
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Therefore 
* *

1 1( ) ( ) ( ( ), ) ( ( ), )k k k p k pV V t V t H P t h H P t h          

1

1
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1 1

1
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 
 

 
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2*( , ( )) ]

ii k p i k Vp t h p t C    (34)  

 

Since *
1( , ( ))i i ku p t  is an optimal control that minimizes ( ( ), )i k pH P t h  one can write 
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According to (34)  
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Since 1 1
ˆ ˆ ˆ( ,..., ), ( ,..., )n nG diag G G P p p   

it is concluded that 

2*

1

2 2* *

2*

ˆ             [ ( , ( )) ( , ( ))
2

                          ( , ( )) ( , ( ))

                     ( , ( )) ]                        

k p

ik

i

i

t hn

i i k j j k ij
i j Nt

i i k V i i k

i k p i k V

p p t p p t d

p p t C u p t d

p t h p t C

  

    





 

  

  

 

 

                                                  35   



IJRA ISSN: 2089-4856  

Distributed Receding Horizon Coverage Control by Multiple Mobile Robots (Fatemeh Mohseni) 

98

2 2
1 1 1 1

1

ˆˆ ( ; ( )) ( ; ( )) ,
i

i

n
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i

n

i k p i k V k p k V GG
i

p t h p t C P t h P t C


      (36)  

 
and using Definition 6, (36) can be rewritten as: 
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Q  is the weighting matrix in CRHCC and * ( )iQ diag Q .  

Likewise, according to Definition 6  
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Now, using the definition of matrix iQ , one can verify that it can be written as  
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 where 1i iN N  . 

 

According to the fact that for a given vector 1 2( , )v v v ,  1 2v v v   and according to the fact that in 

Voronoi partition maxip   and using compatibility constraint, the above inequality can be written as 
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At time kt  , *( ; ( )) ( )i k i k i kp t p t p t  and ˆ ( ; ( )) ( )i k i k i kp t p t p t   , and according to definition of 

coverage matrix one can write 
 

22 2

1 1

[ ( ) ( ) ( ) ] ( )
i

i

Nn

i j ij i V k V Q
i j

p p d p C p t C   
 

        

 
So, at any k N  
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Applying this recursively gives the result for any 0t t  and any   ,t t   where 

 
2* * *( ( ), ) ( ( ), ) ( ) ,

t

p p V Q
t

H p t h H p t h p C d 


                    

 
for any times t , twith 0t t t    . 

Given 0 , choose  0,r  such that the closed ball 

 

 2( , ) |n
V VB C r P P C r     

 

Is a small region around VC . For facility ( )V P is denoted by *( , )pH P h . Since ( )V P is continuous at VP C  

and ( ) 0V P  for all VP C , there exists a  0,   such that 
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VP C r
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 
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Define the level set of ( )V P , by contradiction it can be shown that  

 

 ( , ) | ( )VZ P B C r V P    , 

 
which is a subset contained in the interior of ( , )VB C r . Because ( )V P is monotonic, 

 

0 0( ( )) ( ( )) ,V P t V P t t t     

 
So, Z is a positively invariant set for the closed-loop system (31). Since ( ) 0VV C  and ( )V P  is continuous 

at VP C , there exists a constant  0, r which 
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Thus, VC is a stable equilibrium point of the closed-loop system (31). Since 0( ( ))V P t  and 0 ( ( ))V P  
by induction, it can be shown that 
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Therefore, the infinite integral above exists and is bounded. Let 1  be such that ( )P t belongs to the 

compact set  1( ) VP t C  for all  0,t t  , known to exist because of the strict inequality bound by

shown above. Since *( )u t is in the compact set nu for all  0,t t  and from (5), it is clear that ( )P t  is 

continuous in P and u , we have that ( )P t is bounded for all  0,t t  . So, ( )P t is uniformly continuous [14] 

in t on  0,t  . Since 2
V Q

P C is uniformly continuous in P on the compact set 1VP C  , 

2( ) V Q
P t C is uniformly continuous in t on  0, .t   Since 0Q  , from Barbalat's Lemma [14] it is 

concluded that 
 

( ) 0VP t C   as t    

 
Thus, VC  is an asymptotically stable equilibrium point for closed-loop system (31) with region of attraction

Z . 

Now, for any 0( )P t  , there exists a finite time T  such that ( )P T Z  , which can be shown by 

contradiction as follows. Suppose ( )P t Z for all 0t t . Since ( ) 0V P  and 0Q  , from equation (40), for 

all 0t t , 
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By induction, ( ( ))V P t    as t   ; however, this contradicts ( ( )) 0V P t  . Therefore, any trajectory 

starting in enters Z in finite time. Finally, since   is a positively invariant set it is a region of attraction 

for the closed-loop system (31). Moreover, for any ( )P t , by absolute continuity of ( )P t in 0t t  , it can 

always be chosen a small neighborhood of ( )P t  in which the optimization problem is still feasible. Thus,   
is open and connected.       
 
 
6. SIMULATION RESULTS 

The proposed DRHCC algorithm has been numerically simulated using three different scenarios for 
20 linear mobile robots having the dynamics given by (18). In the first scenario, the event density function is 
assumed to be uniform denoted as ( ) 1s  . It is also assumed that the robots are initially distributed 

randomly in the mission space as shown in Figure 1-(a). After 0.8 second, the robots converge to a centroidal 
Voronoi configuration shown in Figure 1 (b). The Robots’ paths are shown in Figure (1)-c and Figure 1-(d) 

shows the gradual reduction of *( ( ), )H P t hpk towards zero. 
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                                                        (a)                                                         (b) 

 

 
                                                     (c)                                                             (d) 
 

Figure 1. Simulation results by applying DRHCC algorithm to a group of 20 mobile robots in an environment 
with uniform density of events 

 
 
In the second scenario, 20 robots are distributed in an environment with a Gaussian events density function 

equal to
2 2[( 0.8) ( 0.8) ]x ye    .  The simulation results for this scenario are shown in Figure 2. Figure 2-(a) 

shows the Gaussian density function. The initial random distribution of robots in the mission space is shown 
in Figure 2-(b). Final configuration is shown in Figure 2-(c). The Robots’ paths are shown in Figure 2-(d) and 
Figure 2-(e) shows that DRHCC algorithm causes the robots converge to a centroidal Voronoi configuration 
with nearly zero total cost value. As expected, convergence to centroidal Voronoi configuration presented in 
section 5 has been validated. 
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(a)                                                                   (b) 

                      

 
(c)                                                              (d) 

 

 
(e) 

 
Figure 2. (a) Gaussian density function (b) Initial configuration for 20 linear mobile robots in an environment 
with Gaussian density of events (c) Final centroidal Voronoi configuration for 20 linear mobile robots in an 

environment with Gaussian density of events (d) Robots’ trajectories (e) DRHCC total cost function. 
 
 

In the third scenario, the scalability of the DRHCC algorithm is shown. In this scenario, 50 mobile 

robots are distributed in an environment with a Gaussian events density function equal to
2 2[( 0.8) ( 0.8) ]x ye     

similar to previous scenario. The simulation results for this scenario are shown in Figure 3. 
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                                                         (a)                                                                      (b) 

 

   
                                                       (c)                                                                 (d) 
Figure 3. Simulation results by applying DRHCC algorithm to a group of 50 mobile robots in an environment 

with Gaussian distribution density function of events 
 
 

7.   CONCLUSION 
  In this paper, the authors proposed a distributed receding horizon coverage control algorithm for 

controlling a group of linear mobile robots, with a focus on network convergence and stability. In the 
proposed algorithm, the dynamics of every mobile robot was assumed decoupled from each other and by use 
of graphs for analysis, the authors proved system’s stability. The objective of the coverage algorithm 
considered here was to maximize the detection of the occurrence of the events. Simulation results validated 
the algorithm and convergence of the robots to the centroidal Voronoi configuration.   

  The proposed approach can be extended to time-varying environments (e.g., consider a time-
varying distribution density function), systems with non-negligible computational time (time delayed 
systems), unknown environment, non-isotropic sensors and sensors with nonlinear dynamics and multi-
agents coverage based formation control. 
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