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This paper describes an application of extended Kalman filter (EKF) for
localization of an underwater robot. For the application, linearized model of
robot motion and sensor measurement are derived. Like usual EKF, the
method is recursion of two main steps: the time update (or prediction) and
measurement update. The measurement update uses exteroceptive sensors
such as four acoustic beacons and a pressure sensor. The four beacons
provide four range data from these beacons to the robot and pressure sensor
does the depth data of the robot. One of the major contributions of the paper
is suggestion of two measurement update approaches. The first approach
corrects the predicted states using the measurement data individually. The
second one corrects the predicted state using the measurement data
collectively. The simulation analysis shows that EKF outperforms least
squares or odometry based dead-reckoning in the precision and robustness of
the estimation. Also, EKF with collective measurement update brings out
better accuracy than the EKF with individual measurement update.
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1. INTRODUCTION

Knowing the location and orientation is vital for navigation of an underwater mobile robot [1-2].
Localization is also needed for map building, decision making, exploration, environment monitoring, and
object manipulation in underwater environment [3-4].

There have been several technologies for underwater localization. Inertial navigation aided by GPS
(Global Positioning System) was one of the practical methods. This method uses inertial navigation
technology when the robot navigates underwater. On the surface, it uses GPS to fix the bias accumulated
through the dead-reckoning. It uses IMU (Inertial Measurement Unit) and DVL (Doppler Velocity Log) for
dead-reckoning, and corrects accumulated location error using GPS when the robot surfaces once in a while
[5]. This method requires frequent surfacing only for localization which consumes time and energy. Also the
DVL data is not available if the robot gets out of bottom tracking range when surfacing, thus lets the robot
lose track of the location.

Another methods use distance and/or bearing of the robot from acoustic beacons. The acoustic
beacon systems such as USBL (Ultra Short Base Line), SBL (Short Base Line), and LBL (Long Base Line)
provide locations information through trilateration or triangulation along with least squares method. Unlike
the dead-reckoning in inertial navigation, they don’t accumulate error since they rely only on the information
relative to beacons whose location is given in advance. However, they require expensive acoustic beacon
systems and extensive calibration efforts. Besides, they are available when the robot is within some limited
range from the beacons.
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Other approaches appropriate for using both the dead-reckoning and ranges from beacons are
suggested. These approaches are based on Bayes filtering method. They usually use particle filter [6-10] or
Kalman filter [11] methodology. Generally, the method can fuse data from several exteroceptive sensors and
internal motion information. Also, they can be used for SLAM (Simultaneous Localization and Mapping)[12-
13]. They have been used widely for localization and SLAM of ground robot or indoors robot, and it was
extended to underwater localization [14]. It is generally known that the particle filter produces more precise
and robust estimation than the Kalman filter while it requires more extensive calculations. In cases where
computation time is critical, Kalman filter approach is more feasible than particle filter [15].

This paper develops an EKF based method for localization of an unmanned underwater robot.
Though the paper adopts EKF which is prevalent approach for estimation and has hundreds of variants [16],
the paper has the following contributions. It derives formulations for application of the EKF approach for
localization of an underwater robot and investigates the collective application and individual application of
the measurement update. Applications of EKF for underwater localization are relatively few and derivation
of Jacobian matrices for the implementation has not been clearly revealed yet. Also, there has not been clear
distinction between the collective application and individual application of the measurement update.

This paper derives and applies Kalman filter algorithm for underwater localization in the section 2.
The data of depth and ranges from beacons are fused together with the velocity or odometry information
which is obtained internally from the robot motion. In the section 3, the proposed method is simulated and
compared with least squares method and dead-reckoning. Section 4 concludes the paper.

2. LOCATION ESTIMATION BY EXTENDED KALMAN FILTER (EKF)

The proposed method follows conventional approach of Kalman filtering method consisting of two
recursive steps: prediction of location using internal motion information and correction by measurement
relative to external environment. Table 1 depicts pseudo code of the localization method. The procedure
repeats at every time step using the estimation result from the previous time step. The procedure produces
two estimations: the location X, and covariance X, of the estimated location uncertainty. Along with the
location estimation X,.; and covariance estimation X at time t-1, the information on robot motion U, which is

fed by internal sensors such as IMU or odometer sensors are used for prediction of the robot location ;(1 and
covariance X, at time t. This step is described on the line 1 of the Table 1. The predicted robot location X; and

covariance X, is corrected at the line 2. The correction step uses measurement z, related to the landmarks, the
identification of the landmark c,, and the data on the landmark E, given beforechand. The landmark data E;
specifically refers to the location of the landmarks. Detailed derivation of the two steps of prediction and
correction will be described in the following sections.

Table 1. Procedure for EKF location estimation

Localization EKF(X, ,2,,,U,.z,,¢,E)

1. X,, Y, = Prediction step(X,,,%,,,U,)
2. X,, Y, = Correction step(X,, 2, z,.¢,E)
3. return X,, 2.,

The Figure 1 shows a simple example of the estimation result for robot location and covariance. The
robot navigates through planar trajectory indicated by the bold line segments and four TOA (Time of
arrival)’s are used. Bi (i = 1, 2, 3, 4) represents an acoustic beacon. Arcs indicate the range measurement data
of the robot from the beacons. Estimated locations X;’s are marked together with ellipse around the location
which indicates covariance X of the estimation error.
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Figure 1. An example of localization using EKF

2.1. Prediction

The prediction step updates the location and covariance of the estimated locations using the velocity
information of the robot. The velocity can be sensed using the accelerometer, gyroscope, and odometry
sensors or be calculated from the motion command to the actuator. The prediction of the robot location is
described as the state transition equation (1).

X, uc Bc wAt + vs ¢s Oc wAt — ve gs wAt + we ¢s Oc wAt + ws gs wAt
Vi uc s WAt + vs ¢s 0s At + ve ge wAt + ws ¢s s wAt — ws e wAt
x = g(u.X, )= 2|, — us OAt + vs gc OAL + we e OAt 0
o, DAL + gs gt OAt + re gt OAt
0., qc PAt — rs At
v, qs @ sec At + re gsec OAL

In (1), u,= (&, v, w, p, q, r) is the velocity of the robot in 3-dimensional underwater environment
with respect to the body fixed frame. X, = (x, y, z, ¢, 6, ) is the position and orientation of the robot with
respect to an Earth-fixed and inertial coordinate frame. u, and X, are represented according to the common
notations from SNAME(Society of Naval Architects and Marine Engineers). At is the time difference
between the two consecutive sampling time t-1to t. The prediction of the covariance is subject to the equation

Q).
Y, =GX. G +V My @)

In (2), G; and V, are the Jacobian of the g(u,, X..;) with respect to the state X, and u; respectively. M,
is the error covariance of the velocity u,. The following equations show how the Jacobian G, and V, are
derived. In the derivation, for notational simplicity, the subscripts t-1 representing the time index in ¢, 6,1,
and | are deleted. The G, is derived as the following.
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ox' ox' ox' ox' ox' ox'
X, ,, oX,, oX,. X, X, ,, X,
' ' ' ' ' '
X, ,, oX,, oX,. X, X, X,
oz' oz' oz' oz' oz' oz'
G - og(u,X, ) _[0X,., X, X, X, X, X,
T ok op  og  op  o¢ oy oy
oX,,, oX,, oX, . oX,, X, ,, X,
06" 06" 00" 00" 06" 00'
oX,,, oX,, oX, . oX,, X, ,, X,
oy' oy' oy' oy' oy’ oy’
oX oX oX oX,_ X, oX

X =Ly
0 G, (L1) G, (2,1) G,,(3.1)
0 G, (1,1) G,,(2,1) G,, (3.1
1 ve ge OAt — ws ge OAL — uc OAt — vs ¢gs OAt — we ¢s At 0

0 1+ qcdtOAt —rsdtOAL gsgsec’ OAL + regsec’ OAt 0

0 — qs PAt — rc At 1 0 G)
0 gcgsecOAt —rsgsec OAt  gs@sec OfOAL + re g sec Ot OAL 1

S O O O o =
S O O O = O

The G, and G, are as the followings.

ve @s Oc wAt + vs ¢s wAt — ws @gs Oc wAt + wes wAt

G, = —us Bc At + vs gc Oc wAt + we gc Oc wAt

—uc Os wAt —vs ¢gs 0s wAt — ve gc wAt — we ¢s Os wAt + ws gc At 4)
ve ¢s Os wAt — vs gc At — ws @s Os wAt — we gc wAt

G, = —us Os wAt + vs gc Os wAt + we gc Os wAt

uc GcywAt + vs ¢s Oc wAt — ve ¢s wAt + we ¢s Oc wAt + ws ¢s wAt

The Jacobian V, which associates the location at time t to the velocity U, is derived as the following.

ox' ox' ox' ox' ox' ox'
ou, ou, ou, ou, u, ou,
' o oy oy oy o
ou, ~Ou, ou, ou, I H
oz' oz' oz' oz' oz' oz'
- og(u,X,) |ou, ou, ou, ou, u, au,
dp'  0¢'  0¢' 09" 09" O¢

' ou,
ou, ~ou, ou, ou, U, Ju,
00' 00" 060" 060" 00' 00
ou, ou, ou, ou, u, 0ou,
oy' Oy' oy' oy' Oy' oy'
ou, ~Ou, ou, ou, E H
cOcyAt s@gsOcwAt —coswAt cgsOcwAt +sgswAt 0 0 0
cOswAt  s@gsOswAt + cgcwAt  cgsOs At —sgcwAt 0 0 0
| —sOAt s gc OAt cgcOAt 0 0 0
o 0 0 At sgtOAt cdtOAt
0 0 0 0 N; sPAt ®)
0 0 0 0 s¢secOAt cgpsec OAt
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The error covariance M, of the velocity U, is assumed to be diagonal for the computational convenience. It
implies that the linear and angular velocity in each direction has no correlation with the other components of
the velocity.

P(1,1) 0 0 0 0 0
0 P21) 0 0 0 0
o 0 P31 0 0 0 (6)
1o 0 0 P41 0 0
0 0 0 0 P51 0
0 0 0 0 0 P(61)
where,
(e, ul + a, M+ a, W+ a,|p| + a,ld + o, + a,)
(am ul + a, M+ a, M + a,|p| + a,ld+ o, + a,
P _ (awu u| + aWV v + aWW M + awp|p| + a\)q q| + awr r + aWS)Z
T @l + @b+ il + @, ol + @l + @+
(aqu u| ta,M T an|Wi + thp|p| * aqq|q| ta,rt aqs)z
(et ] + @, ] + @l + @, |p| + @, ld + @,/ + @)

In the equation (6), the parameter a,,, relates the velocity v, to the uncertainty of the velocity v;. The
parameter a,;; addresses the uncertainty of velocity v; when the robot stays still.

Table 2 shows the algorithm for prediction of the robot location and error covariance. It corresponds to the
line 1 of the Table 1. Lines 3 to 5 calculate the Jacobian G; which projects the estimated robot location at t-1
to the a priori location at time t. Line 6 calculates the Jacobian V, which maps the velocity u; to the a priori
location at time t. Lines 7 and 8 provides the error covariance M, of the velocity uU,. Line 9 transforms the
linear velocity and angular velocity represented with respect to the body fixed frame to those represented
with respect to the Earth-fixed and inertial coordinate frame. Tz, and Tg, are the Euler transformation
matrices relating the body fixed frame velocity to Earth-fixed frame velocity. Ty is for transformation of
linear velocity and T, is for angular velocity.

cley s@sbey —cgsy  cgsbey +sgsy
Ty =|chy s@sbsy+cdey cosbsy —sgey (7
—s0 sgcl cgcl

1 singtan@ cos Ptan 6
T, A=\|0 cos ¢ —sin¢ ®)

0 singsecO cos¢sect

Finally, lines 10 and 11 yield a priori estimation of robot location and error covariance at time t.
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Table 2. Prediction of a priori robot location and error covariance from previous estimates at time t-1.

Prediction step(X, |, 2, ;> U,)

1: ¢:Xt—l¢9 0=X_,4 ¥v=X,, v
2: = U, w=u,, p=U, g=U, r=u,
veds Bc AL + vs gs wAt — ws gs Bc At + wes wAt
3: [ — usBc At + vsge Bc wAt + wede e At
—ucOs At — vsgs Os At — vege wAt — weds 6s WAt + ws de At
vegs Os WAt — vsge At — ws s 6s wAt — wege At
4: ( —usbs WAt + vsgcbs wAt + wede bs wAt
uclc At + vsgs Bc At — veds WAt + weds Bc At + ws gs wAt
1 00 G, G1,(2.)) G1,(3))
010 G2,(1,1) G2,(2,1) G2,(3.1)
;. G - 0 0 1 vege OAt — ws ge OAt — ucOAt — vsgs OAt — wegs OAt 0
' 10 0 0 1+qedtOAt—rstONt  gsdsec’ OAt + regsec’ OA 0
000 — gsPAt — regt 1 0
0 0 0 gcgsecOAt—rspsecOAt  gs@secBrOAt + rcgsec B OAt 1
cOcyAt s@gsOcyAt —cgsyAt  cgsGeyAt + sgswAt 0 0 0
cbsyAt  s@sOsyAt +cgcyAt  cgsOs At —sgcyAt 0 0 0
6 o sOAt sin @ cos OA¢ cgcOAt 0 0 0
! 0 0 0 At s@tOAt cdtOAt
0 0 0 0 cPAt SPAL
0 0 0 0 s@gsecOAt cpsecOAt
( ” W+ a,lp + a,
a,lu + a, v\+aww{+a +a,
. P:(wu\+a v‘+aww‘+awp‘+a +awr\+a )2
] o+ a, || + a,fd a,f
(@, wl + @, |p + a,ld )z
(am ul WM+ a,lp + a, )2
P(L)) 0 0 0 0 0
0 P2, 0 0 0 0
0 0 P@3.)) 0 0 0
8: M, =
0 0 0 P4, 0 0
0 0 0 0 P(5.)) 0
0 0 0 0 0 P(6.])
9 (i3 2 =T, ($.0,9) =Tou(p.gr)
100 X=X+ y z ¢ 0 yfa
1: X, =GX, G +vmy’
12: return ir, it

2.2. Correction of the a Priori Estimates

The correction stage which is also called the measurement update corrects the a priori estimates of
the robot location and error covariance. While the prediction stage uses only the internal information of robot
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velocity and previous estimates, the correction stage uses the measurement information relative to external
environment to adjust the a priori estimates. In our application the external environment refers to the acoustic
beacons. After the beacons emit acoustic signal, the hydrophone[17] at the robot receives the acoustic signals
and calculates the distance between the hydrophones and the robot using the TOA(time of arrival) of the
acoustic signals. Also, the method uses depth of the robot from the surface which is detected by a pressure
sensor. The following equations are used for correction stage.

S,=H,Z[H ] +0
K =% ][s ]

X =X/ +K,(z, -%,)

>, =(I-KH,)Y,

©

The matrix H; is the Jacobian which relates the robot location to the measurement. Q; is the error
covariance of the measurement process. The process calculates the Kalman gain K; and uses it for the

correction of the a priori estimate X, to X;, and X, to X,. We apply the correction step in two ways: applying
the procedure for each measurement individually in sequence and applying it for all the measurements at
once collectively. The two application approaches are explained in the following section and they are tested
in the simulations.

2.2.1. Dealing with Range Data Individually: Correcting the Prediction using Only One Data at a Time

The predicted location can be corrected every time a measurement data is available. A data of range
from a beacon or the depth data by the pressure sensor can be used for correction. Measurement model
hro(*) for case of range from a beacon and the model /p,,,(-) for the case of depth are described by the
following formulas.

Z;,TOA = h(xt’J’ E) (’?,TOAJ

S[
_ ,TOA _ _ (10)
(B, =X, ) +(E,, - X, ) +(E,.-X, )
E,,
Zt,Depth = h(>(_t): )(_t,z (11)

zl ro4 18 the data related to the i-th beacon where rt ro4 18 the distance from the i-th beacon to the robot and

s i ro4 18 the signature for the measurement. (E;,, E;,, E;.) is the coordinate of the i-th beacon and (Xt - Xt " X
¢-) is the location of the robot at time t. Z; p,,s is the depth data. The Jacobians for the measurement model
needed for application of EKF are derived from the equations (10) and (11). H' o, and H, pepin 1n the
equations (12) and (13) correspond to the linearization of &i70,(-) and Zp,u ("), respectively.

Hi - on(X,, j,E)
0oX,
or! or! or! or; or; or;!
| oX,, oX,, oX,. oX,, oX, X,
|l ast s e e e o (12)
ox,, oX,, oX, X, oX, oX,
E..-X E, -X E..-X,
_ JX Lx _ 7y Ly _ ,y 0 0 0
- { Ja ] ( Ja ] { o
0 0 0 0 0 0

V7 =(E,.~X0) +(E,, ~X1y) +(E,. = X.2)’
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on(X.)
Ht,Depth = 6X
— )?t,z )TI,Z )?t,z >zL‘,z Yt,z )?t z ( 1 3)
- ait,x ait,} a)Tt,Z ait.lﬁ aitﬂ a)?t’u/

Table 3 and 4 show the correction procedure for the measurement of distance from a beacon and for the
measurement of depth respectively. Line 6 of the Table 3 uses the equation (12), and line 3 of the Table 4
does the equation (13). They follow the usual EKF procedure described in the equation (9).

In the Table 3, Z, = (#, s') refers to the distance #, from the i-th beacon and the signature s’ of the
measurement. In the Table 4, z, represents depth data. It is notable that in case of correction by range data, the
location E; of the i-th beacon is needed as well as the range data ', from the beacon E;. These Tables return
the final estimation of the robot location and the error covariance X; of the location estimation.

Table 3. Procedure for the correction using the range data z, from a beacon E;

Correction step on TOA( X, X c,E)

I’Zt’

o, 0
1: Qt :[ 0 O'f
2: forall observed features of TOA z, ., = (’?i s, )r do
3 j=¢
£ qm(B, Xy (B, X0 ) (B, K0S

. (Ve
5: ZtI,TOA :[ j
E,,
£ -X| (E,-X.) [(E.-X.

|| B B , _ ’ 0 0 0

6. Hr - \/a \/5 \/g
0 0 0 0 0 0

7: si=H 3, [H] +0

i~ i it
8: K, :Zr [Hr ]f [St T
9- X=X, +K:(Z;,T0A _2:10/1)
10: Y, =(-KH))Z,
11: endfor
12: )?t,TOA = Y” it,TOA = if
13: return )?,IOA, E,IOA

IJRA Vol. 3, No. 3, September 2014: 168 — 183



IJRA ISSN: 2089-4856 a 176

Table 4. Procedure for the correction using the depth measurement.

Correction step on depth( Yt, Zt, z,)

0

||
| MI = ><|§N

010 0 0)
7] +0
AR
X, =Xi+K,(z,-z,)
>, =(I-KH,)Y,

return X,, X,

z,
H,
S,
K, =

R I

2.2.2. Dealing with Range Data Collectively: Correcting the Prediction using all the Range Data from
Every Beacons and Depth Data Collectively

All the measurement data can be used collectively for the correction of the predicted estimation of
the location and error covariance at a time. It is assumed that there are n range data r"t ro4 (i=1,...,n) from n
beacons and one data of depth d; p,s. Each range data ry, T04 comes together with one more data of signature

s'cro4- So the observed measurement data is z= (r T04> st 1045 -5 P'v 1045 8" 7045 dipepn). The measurement
model is described as the equation (14).

_ 1 i i T
Z h(X E) (rTOA Siroa " Viroa  Siros dt,Depth)

JOEL =X +(E, =Xy +(E,, = Xi2 )

Ei (14)

\/(Ei,x - )?t,x)2 +(Ei,y - )Tl‘,y)2 +(Ei,z - >Tt,z)2

1,8

x| m

tz

From the measurement equation (14), the Jacobian matrix H, is derived as the following.

Filtering Method for Location Estimation of an Underwater Robot (Nak Yong Ko)
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o _an(X, . E)

oX,, oX,, oX

X, . 6)7W 6)7,'2 6)7”? 6)7“9 ox,,
Ytz i!z if,z i!,z )th )th
oxX,, oX, ~ox, ox,, oX,, oX,,
_[ELX_XL)C] _[Elvy_xr'yJ —[EI’Z_XIJJ 0 0 0
V4 V4 V4
? 0 AN 5
_ E n,x - Yt,x _ E ny B )Tt:y _ E” z thy 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

\/Z: \/(Ei,x - if,x)z +(Ei,y - )?t,y)z +(Ei,z - Xt,z)z

Table 5 describes the correction step of EKF which uses all the measurements collectively. It requires all the
measurement data z,= (r't,TOA, slt_mA, eees V' 7045 8" 704> Ay pepn) and all the beacon locations E = (£, E1,, E .,
eovs Eyx, Eny, E, ) corresponding to the ranges rlt_mA, ' 104. Line 5 uses the linearization derived at the
equation (15).
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Table 5. Correction using all the available measurement data collectively
Correction step on TOA and Depth( X, >,.2,E)
af, 0o 0 0 0 0
0 6> 0 0 0 0
I _ : : : :
9=l 0 0 ot 0 0
0 0 0 0 o 0
0o 0 0 0 0 o
2: Z,= (1;1 s o1t oslod, )T
9\ [(Ep=Xw ) +(E,, =Xy ) +(E,. = Xe: )
3: g=|: |= :
q. (B, =X ) +(E, = X0, ) +(E, = X.:)’
4 i=Wa B, ~ Jo B, XS
E, —Xux E,y—xw} (EI —,Zj
- = | —— - 2 0 0 0
0 0 0 0 0 0
5 H, = o D D :
_ E,x_th _ El-,y_Xr,y _ Ei,z_Xt’Z 0 0 0
g Ja, Ja.
0 0 0 0 0 0
0 0 1 0 0 0
6'. Sl‘ = Hl‘ il‘ [Hl‘ ]T + Qt
7'. Kt = zt [Ht ]T [St ]7]
8: Y; :Yt_{—Kt(Zt_ét
9: it :(I_KtHz)iz
10: Xt—Xt, thi,
11:  return X, %,
3. SIMULATION RESULTS

The simulation compares the localization performance for the four methods of dead reckoning (DR),

least squares (LS), the EKF method applied individually, and the EKF method applied collectively. They are
tested under the same conditions. There are four acoustic beacons located at E;(-10,0,0)m, E»(10,0,0)m,
E5(10,10,0)m, and E4(-10,0,0.001)m. The robot is equipped with depth sensor which measures the distance of
the robot from the surface. The simulated robot motion and range measurement inevitably include
uncertainty, which are described in the Table 6. The uncertainty parameters a,,, ., and a,, address the
uncertainty of proprioceptive sensors which are used for dead reckoning as the equation (6) describes. The o',
represents standard deviation of the range measurement from the i-th beacon. Likewise, o, indicates standard
deviation of the depth measurement. The case A has lower uncertainty in both the proprioceptive and
exteroceptive sensing than the case B.

Filtering Method for Location Estimation of an Underwater Robot (Nak Yong Ko)
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Table 6. Uncertainty parameters used for simulations.

Sensors proprioceptive sensor exteroceptive sensors
uncertainty o', for range from a
o, Oy [ o, for depth
parameters ”“ " " beacon ¢ p
case A 1 1 1 Im Im
case B 2 2 2 2m 2m

3.1. Result for the Case A

Figure 2 shows the simulation for the case A. In the Figure, (a), (b), (c), and (d) represent the
location estimation result of dead reckoning, least squares, individual EKF, and collective EKF, respectively.
As well known, the dead-reckoned result deteriorates with time because the error accumulates with time. The
LS method which uses only the exteroceptive measurement shows better performance than the dead
reckoning and worse performance than the EKF methods. The individual EKF and collective EKF show the
best results. To compare these results, deviation distance of the estimated location from the nominal
trajectory is calculated and displayed in histogram in the Figure 3, and the distribution of the deviation is
calculated and shown in the Table 7. The distribution is described by mean, standard deviation, and
maximum deviation. Table 7 reveals that EKF applied collectively is slightly better than the EKF applied
individually.

Simulation for Deadreckoning using only internal information Simulation for Least square for using only exteral information

[—t
+ s

¥ axis(m)
¥ axis(m)

(a) Result of dead reckoning (b) Result of least squares

Simulation for EKF using only TOA and Depth information Simulation for EKF using only TOA and Depth information

- -
—=r r
EKFTD-RES EKFTD-COM

_T | T - =
|
|
|
|
|
|

T
I
I
I
I
I
I
I
I
- _ 1

Zaxis(m)

Xaxis(m) ¥ axis(m) Xaxis(m)

¥ axis(m)

(c) Result of individual EKF (d) Result of collective EKF

Figure 2. Simulations results for the case A
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Figure 3. Error distribution of the location estimates

Table 7. distribution of estimation error(unit: m)

mean standard deviation maximum error
DR 14.575 8.476 32.137
LS 25954.41 20768.84 120632.8
individual EKF 1.837 1.776 10.139
collective EKF 1.805 1.626 9.828

3.2. Result for the Case B

Case B tests the performance of the proposed method where the measurement data has more error

than the case A. The uncertainty parameters for the case B are twice of those for the case A as shown in the
Table 6. Figure 4 and 5 show the results for the simulation. Comparing the Figure 4 and 5 with the Figures 2
and 3 shows the location error increases with increased uncertainty in both the proprioceptive and
exteroceptive sensors. Table 8 lists the statistical analysis of the localization error. Comparison of the error
for the individual EKF and collective EKF shows that as the uncertainty increases, the collective EKF shows
more noticeable improvement over the individual EKF. In case where uncertainty is smaller, the advantage of
the collective EKF was negligible as shown in the last two lines of the Table 7.
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Figure 4. Comparison of location estimation for the case of higher measurement uncertainty
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Figure 5. Error distribution for the case of higher measurement uncertainty

Table 8. Error distribution for the case of higher measurement uncertainty(unit: m)

mean standard deviation maximum error
DR 24.922 8.605 51.856
LS 50379.42 40204.03 212778.5
individual EKF 2.282459 1.313 7.813
collective EKF 2.095 1.094 5.546

4. CONCLUSION

This paper describes the application of EKF to localization of underwater robot in 3 dimensional
underwater environment. Linearized motion model of the underwater robot is derived together with the
linearized measurement model. It uses the exteroceptive measurement data of range from beacons to the
robot and the depth of the robot. The EKF implementation is derived in two ways: One is the application of
the EKF whenever individual measurements are available, and the other is application of the EKF when a set
of data is collected.

The performance is compared through simulation. It is shown that both of the EKF methods work
better than the dead-reckoning and least squares method. In case of small uncertainty in the robot motion and
measurement, collective implementation of EKF yields a little better performance than the individual
implementation of EKF. The performance improves noticeably by the collective EKF collectively when the
uncertainty of motion and measurement becomes higher.
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The proposed method is useful when neither the precise inertial sensors nor the precise range data
are available due to cost, dimension of the robot, or limitation on the underwater environment. The poor
quality of proprioceptive measurement alone produces poor dead reckoning. Also, the coarse exteroceptive
range data alone produces deficient performance of least squares. Nevertheless, the EKF fuses these data to
get useful location data.
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