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 This paper describes an application of extended Kalman filter (EKF) for 
localization of an underwater robot. For the application, linearized model of 
robot motion and sensor measurement are derived. Like usual EKF, the 
method is recursion of two main steps: the time update (or prediction) and 
measurement update. The measurement update uses exteroceptive sensors 
such as four acoustic beacons and a pressure sensor. The four beacons 
provide four range data from these beacons to the robot and pressure sensor 
does the depth data of the robot. One of the major contributions of the paper 
is suggestion of two measurement update approaches. The first approach 
corrects the predicted states using the measurement data individually. The 
second one corrects the predicted state using the measurement data 
collectively. The simulation analysis shows that EKF outperforms least 
squares or odometry based dead-reckoning in the precision and robustness of 
the estimation. Also, EKF with collective measurement update brings out 
better accuracy than the EKF with individual measurement update. 
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1. INTRODUCTION 

Knowing the location and orientation is vital for navigation of an underwater mobile robot [1-2]. 
Localization is also needed for map building, decision making, exploration, environment monitoring, and 
object manipulation in underwater environment [3-4]. 

There have been several technologies for underwater localization. Inertial navigation aided by GPS 
(Global Positioning System) was one of the practical methods. This method uses inertial navigation 
technology when the robot navigates underwater. On the surface, it uses GPS to fix the bias accumulated 
through the dead-reckoning. It uses IMU (Inertial Measurement Unit) and DVL (Doppler Velocity Log) for 
dead-reckoning, and corrects accumulated location error using GPS when the robot surfaces once in a while 
[5]. This method requires frequent surfacing only for localization which consumes time and energy. Also the 
DVL data is not available if the robot gets out of bottom tracking range when surfacing, thus lets the robot 
lose track of the location. 

Another methods use distance and/or bearing of the robot from acoustic beacons. The acoustic 
beacon systems such as USBL (Ultra Short Base Line), SBL (Short Base Line), and LBL (Long Base Line) 
provide locations information through trilateration or triangulation along with least squares method. Unlike 
the dead-reckoning in inertial navigation, they don’t accumulate error since they rely only on the information 
relative to beacons whose location is given in advance. However, they require expensive acoustic beacon 
systems and extensive calibration efforts. Besides, they are available when the robot is within some limited 
range from the beacons. 
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Other approaches appropriate for using both the dead-reckoning and ranges from beacons are 
suggested. These approaches are based on Bayes filtering method. They usually use particle filter [6-10] or 
Kalman filter [11] methodology. Generally, the method can fuse data from several exteroceptive sensors and 
internal motion information. Also, they can be used for SLAM (Simultaneous Localization and Mapping)[12-
13]. They have been used widely for localization and SLAM of ground robot or indoors robot, and it was 
extended to underwater localization [14]. It is generally known that the particle filter produces more precise 
and robust estimation than the Kalman filter while it requires more extensive calculations. In cases where 
computation time is critical, Kalman filter approach is more feasible than particle filter [15]. 

This paper develops an EKF based method for localization of an unmanned underwater robot. 
Though the paper adopts EKF which is prevalent approach for estimation and has hundreds of variants [16], 
the paper has the following contributions. It derives formulations for application of the EKF approach for 
localization of an underwater robot and investigates the collective application and individual application of 
the measurement update. Applications of EKF for underwater localization are relatively few and derivation 
of Jacobian matrices for the implementation has not been clearly revealed yet. Also, there has not been clear 
distinction between the collective application and individual application of the measurement update. 

This paper derives and applies Kalman filter algorithm for underwater localization in the section 2. 
The data of depth and ranges from beacons are fused together with the velocity or odometry information 
which is obtained internally from the robot motion. In the section 3, the proposed method is simulated and 
compared with least squares method and dead-reckoning. Section 4 concludes the paper. 
 
 
2. LOCATION ESTIMATION BY EXTENDED KALMAN FILTER (EKF) 

The proposed method follows conventional approach of Kalman filtering method consisting of two 
recursive steps: prediction of location using internal motion information and correction by measurement 
relative to external environment. Table 1 depicts pseudo code of the localization method. The procedure 
repeats at every time step using the estimation result from the previous time step. The procedure produces 
two estimations: the location Xt and covariance Σt of the estimated location uncertainty. Along with the 
location estimation Xt-1 and covariance estimation Σt-1 at time t-1, the information on robot motion ut which is 

fed by internal sensors such as IMU or odometer sensors are used for prediction of the robot location X
─

t and 

covariance Σ
─

t at time t. This step is described on the line 1 of the Table 1. The predicted robot location X
─

t and 

covariance Σ
─

t is corrected at the line 2. The correction step uses measurement zt related to the landmarks, the 
identification of the landmark ct, and the data on the landmark Et given beforehand. The landmark data Et 
specifically refers to the location of the landmarks. Detailed derivation of the two steps of prediction and 
correction will be described in the following sections. 

 
 

Table 1. Procedure for EKF location estimation 
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The Figure 1 shows a simple example of the estimation result for robot location and covariance. The 
robot navigates through planar trajectory indicated by the bold line segments and four TOA (Time of 
arrival)’s are used. Bi (i = 1, 2, 3, 4) represents an acoustic beacon. Arcs indicate the range measurement data 
of the robot from the beacons. Estimated locations Xt’s are marked together with ellipse around the location 
which indicates covariance Σt of the estimation error. 
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Figure 1. An example of localization using EKF 
 
 
2.1. Prediction 

The prediction step updates the location and covariance of the estimated locations using the velocity 
information of the robot. The velocity can be sensed using the accelerometer, gyroscope, and odometry 
sensors or be calculated from the motion command to the actuator. The prediction of the robot location is 
described as the state transition equation (1). 
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In (1), ut = (u, v, w, p, q, r) is the velocity of the robot in 3-dimensional underwater environment 

with respect to the body fixed frame. Xt = (x, y, z, ϕ, θ, ψ) is the position and orientation of the robot with 
respect to an Earth-fixed and inertial coordinate frame. ut and Xt are represented according to the common 
notations from SNAME(Society of Naval Architects and Marine Engineers). Δt is the time difference 
between the two consecutive sampling time t-1to t. The prediction of the covariance is subject to the equation 
(2). 
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T
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In (2), Gt and Vt are the Jacobian of the g(ut, Xt-1) with respect to the state Xt-1 and ut respectively. Mt 

is the error covariance of the velocity ut. The following equations show how the Jacobian Gt and Vt are 
derived. In the derivation, for notational simplicity, the subscripts t-1 representing the time index in ϕt-1, θt-1, 
and ψt-1 are deleted. The Gt is derived as the following. 
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The G1,t and G2,t are as the followings. 
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The Jacobian Vt which associates the location at time t to the velocity ut is derived as the following. 
 

 











































































































































































 

tcts

tstc

ttcttst

tcctcsts

tcstssctcctssstsc

tsstcsctsctcsstcc

ψψψψψψ

zzzzzz

yyyyyy

xxxxxx

g
V

rt,qt,pt,wt,vt,ut,

rt,qt,pt,wt,vt,ut,

rt,qt,pt,wt,vt,ut,

rt,qt,pt,wt,vt,ut,

rt,qt,pt,wt,vt,ut,

rt,qt,pt,wt,vt,ut,

t

tt
t













secsec0000

0000

000

000

000

000

''''''

''''''

''''''

''''''

''''''

''''''

, 1

uuuuuu

uuuuuu

uuuuuu

uuuuuu

uuuuuu

uuuuuu

u

u X

 (5) 



IJRA ISSN: 2089-4856  

Filtering Method for Location Estimation of an Underwater Robot (Nak Yong Ko) 

172

The error covariance Mt of the velocity ut is assumed to be diagonal for the computational convenience. It 
implies that the linear and angular velocity in each direction has no correlation with the other components of 
the velocity. 
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In the equation (6), the parameter αv1v2 relates the velocity v2 to the uncertainty of the velocity v1. The 
parameter αv1s addresses the uncertainty of velocity v1 when the robot stays still. 
Table 2 shows the algorithm for prediction of the robot location and error covariance. It corresponds to the 
line 1 of the Table 1. Lines 3 to 5 calculate the Jacobian Gt which projects the estimated robot location at t-1 
to the a priori location at time t. Line 6 calculates the Jacobian Vt which maps the velocity ut to the a priori 
location at time t. Lines 7 and 8 provides the error covariance Mt of the velocity ut. Line 9 transforms the 
linear velocity and angular velocity represented with respect to the body fixed frame to those represented 
with respect to the Earth-fixed and inertial coordinate frame. TE1 and TE2 are the Euler transformation 
matrices relating the body fixed frame velocity to Earth-fixed frame velocity. TE1 is for transformation of 
linear velocity and TE2 is for angular velocity. 
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Finally, lines 10 and 11 yield a priori estimation of robot location and error covariance at time t. 
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Table 2. Prediction of a priori robot location and error covariance from previous estimates at time t-1. 
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2.2. Correction of the a Priori Estimates 

The correction stage which is also called the measurement update corrects the a priori estimates of 
the robot location and error covariance. While the prediction stage uses only the internal information of robot 
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velocity and previous estimates, the correction stage uses the measurement information relative to external 
environment to adjust the a priori estimates. In our application the external environment refers to the acoustic 
beacons. After the beacons emit acoustic signal, the hydrophone[17] at the robot receives the acoustic signals 
and calculates the distance between the hydrophones and the robot using the TOA(time of arrival) of the 
acoustic signals. Also, the method uses depth of the robot from the surface which is detected by a pressure 
sensor. The following equations are used for correction stage. 
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The matrix Ht is the Jacobian which relates the robot location to the measurement. Qt is the error 

covariance of the measurement process. The process calculates the Kalman gain Kt and uses it for the 

correction of the a priori estimate X
─

t to Xt, and Σ
─

t to Σt. We apply the correction step in two ways: applying 
the procedure for each measurement individually in sequence and applying it for all the measurements at 
once collectively. The two application approaches are explained in the following section and they are tested 
in the simulations. 
 
2.2.1. Dealing with Range Data Individually: Correcting the Prediction using Only One Data at a Time 

The predicted location can be corrected every time a measurement data is available. A data of range 
from a beacon or the depth data by the pressure sensor can be used for correction. Measurement model 
hTOA(·) for case of range from a beacon and the model hDepth(·) for the case of depth are described by the 
following formulas. 
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zi

t,TOA is the data related to the i-th beacon where ri
t,TOA is the distance from the i-th beacon to the robot and 

si
t,TOA is the signature for the measurement. (Ei,x, Ei,y, Ei,z) is the coordinate of the i-th beacon and (X

─

t,x, X
─

t,y, X
─

t,z) is the location of the robot at time t. Zt,Depth is the depth data. The Jacobians for the measurement model 
needed for application of EKF are derived from the equations (10) and (11). Hi

t,TOA and Ht,Depth in the 
equations (12) and (13) correspond to the linearization of hTOA(·) and hDepth(·), respectively. 
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Table 3 and 4 show the correction procedure for the measurement of distance from a beacon and for the 
measurement of depth respectively. Line 6 of the Table 3 uses the equation (12), and line 3 of the Table 4 
does the equation (13). They follow the usual EKF procedure described in the equation (9). 
In the Table 3, zi

t = (ri
t, si

t) refers to the distance ri
t from the i-th beacon and the signature si

t of the 
measurement. In the Table 4, zt represents depth data. It is notable that in case of correction by range data, the 
location Ei of the i-th beacon is needed as well as the range data zi

t from the beacon Ei. These Tables return 
the final estimation of the robot location and the error covariance Σt of the location estimation. 
 
 

Table 3. Procedure for the correction using the range data zi
t from a beacon Ei  
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)ẑ(zK:9

SHK:8

QHHS:7

000000

000
qqqH:6

q
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Table 4. Procedure for the correction using the depth measurement. 
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2.2.2. Dealing with Range Data Collectively: Correcting the Prediction using all the Range Data from 
Every Beacons and Depth Data Collectively  

All the measurement data can be used collectively for the correction of the predicted estimation of 
the location and error covariance at a time. It is assumed that there are n range data ri

t,TOA (i=1,…,n) from n 
beacons and one data of depth dt,Depth. Each range data rt,TOA comes together with one more data of signature 
si

t,TOA. So the observed measurement data is zt=(r1
t,TOA, s1

t,TOA, …, rn
t,TOA, sn

t,TOA, dt,Depth). The measurement 
model is described as the equation (14). 
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From the measurement equation (14), the Jacobian matrix Ht is derived as the following. 
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Table 5 describes the correction step of EKF which uses all the measurements collectively. It requires all the 
measurement data zt = (r1

t,TOA, s1
t,TOA, …, rn

t,TOA, sn
t,TOA, dt,Depth) and all the beacon locations E = (E1,x, E1,y, E1,z, 

…, En,x, En,y, En,z) corresponding to the ranges r1
t,TOA, rn

t,TOA. Line 5 uses the linearization derived at the 
equation (15). 
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Table 5. Correction using all the available measurement data collectively  
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3. SIMULATION RESULTS 

The simulation compares the localization performance for the four methods of dead reckoning (DR), 
least squares (LS), the EKF method applied individually, and the EKF method applied collectively. They are 
tested under the same conditions. There are four acoustic beacons located at E1(-10,0,0)m, E2(10,0,0)m, 
E3(10,10,0)m, and E4(-10,0,0.001)m. The robot is equipped with depth sensor which measures the distance of 
the robot from the surface. The simulated robot motion and range measurement inevitably include 
uncertainty, which are described in the Table 6. The uncertainty parameters αuu, αww, and αrr address the 
uncertainty of proprioceptive sensors which are used for dead reckoning as the equation (6) describes. The σi

r 
represents standard deviation of the range measurement from the i-th beacon. Likewise, σd indicates standard 
deviation of the depth measurement. The case A has lower uncertainty in both the proprioceptive and 
exteroceptive sensing than the case B. 
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Table 6. Uncertainty parameters used for simulations. 

sensors proprioceptive sensor exteroceptive sensors 

uncertainty 
parameters 

αuu αww αrr 
σi

r for range from a 
beacon 

σd for depth 

case A 1 1 1 1m 1m 

case B 2 2 2 2m 2m 

 
 
3.1. Result for the Case A  

Figure 2 shows the simulation for the case A. In the Figure, (a), (b), (c), and (d) represent the 
location estimation result of dead reckoning, least squares, individual EKF, and collective EKF, respectively. 
As well known, the dead-reckoned result deteriorates with time because the error accumulates with time. The 
LS method which uses only the exteroceptive measurement shows better performance than the dead 
reckoning and worse performance than the EKF methods. The individual EKF and collective EKF show the 
best results. To compare these results, deviation distance of the estimated location from the nominal 
trajectory is calculated and displayed in histogram in the Figure 3, and the distribution of the deviation is 
calculated and shown in the Table 7. The distribution is described by mean, standard deviation, and 
maximum deviation. Table 7 reveals that EKF applied collectively is slightly better than the EKF applied 
individually. 

 
 

    
(a) Result of dead reckoning           (b) Result of least squares 

      
(c) Result of individual EKF             (d) Result of collective EKF 

 
Figure 2. Simulations results for the case A 
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(a) Distribution for the dead reckoning          (b) Distribution for the individual EKF 

 
(c) Distribution for the collective EKF 

 
Figure 3. Error distribution of the location estimates 

 
 

Table 7. distribution of estimation error(unit: m) 
mean standard deviation maximum error 

DR 14.575 8.476 32.137 

LS 25954.41 20768.84 120632.8 

individual EKF 1.837 1.776 10.139 

collective EKF 1.805 1.626 9.828 

 
 
3.2. Result for the Case B 

Case B tests the performance of the proposed method where the measurement data has more error 
than the case A. The uncertainty parameters for the case B are twice of those for the case A as shown in the 
Table 6. Figure 4 and 5 show the results for the simulation. Comparing the Figure 4 and 5 with the Figures 2 
and 3 shows the location error increases with increased uncertainty in both the proprioceptive and 
exteroceptive sensors. Table 8 lists the statistical analysis of the localization error. Comparison of the error 
for the individual EKF and collective EKF shows that as the uncertainty increases, the collective EKF shows 
more noticeable improvement over the individual EKF. In case where uncertainty is smaller, the advantage of 
the collective EKF was negligible as shown in the last two lines of the Table 7. 
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(a) Result of dead reckoning                (b) Result of least squares 

 

      
(c) Result of individual EKF             (d) Result of collective EKF 

 
Figure 4. Comparison of location estimation for the case of higher measurement uncertainty 
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(a) Distribution for the dead reckoning          (b) Distribution for the individual EKF 

 

 
(c) Distribution for the collective EKF 

 
Figure 5. Error distribution for the case of higher measurement uncertainty 

 
 

Table 8. Error distribution for the case of higher measurement uncertainty(unit: m) 
mean standard deviation maximum error 

DR 24.922 8.605 51.856 

LS 50379.42 40204.03 212778.5 

individual EKF 2.282459 1.313 7.813 

collective EKF 2.095 1.094 5.546 

 
 

4. CONCLUSION 
This paper describes the application of EKF to localization of underwater robot in 3 dimensional 

underwater environment. Linearized motion model of the underwater robot is derived together with the 
linearized measurement model. It uses the exteroceptive measurement data of range from beacons to the 
robot and the depth of the robot. The EKF implementation is derived in two ways: One is the application of 
the EKF whenever individual measurements are available, and the other is application of the EKF when a set 
of data is collected. 

The performance is compared through simulation. It is shown that both of the EKF methods work 
better than the dead-reckoning and least squares method. In case of small uncertainty in the robot motion and 
measurement, collective implementation of EKF yields a little better performance than the individual 
implementation of EKF. The performance improves noticeably by the collective EKF collectively when the 
uncertainty of motion and measurement becomes higher. 
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The proposed method is useful when neither the precise inertial sensors nor the precise range data 
are available due to cost, dimension of the robot, or limitation on the underwater environment. The poor 
quality of proprioceptive measurement alone produces poor dead reckoning. Also, the coarse exteroceptive 
range data alone produces deficient performance of least squares. Nevertheless, the EKF fuses these data to 
get useful location data. 
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