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1. INTRODUCTION 

Cranes are extensively applied in transportation and construction fields [1, 2]. Overhead cranes are 
one kind of Cranes used to transport arbitrary load form a position to another one. The overhead crane 
consists of a cart or trolley which moves along its rail. Moreover, a hoisting mechanism including a cable and 
a payload is attached to the cart. The overhead cranes have extensively used in many industries, because 
these systems exhibit novel features such as low cost, easy assembly, and less maintenance [3-5]. Therefore, 
the overhead cranes have attracted a great deal of interests, and the dynamic modeling and control of such 
systems are studied by some researchers. Hubbel et al. [6] used an open-loop method to control the motion of 
a gantry crane. In this method, the input control profile was determined in such way that unwanted 
oscillations and residual pendulations were avoided. However their approach was applicable, but the open-
loop control scheme is not robust to disturbances and parameter uncertainties [7]. Moreover, a feedback PID 
anti-swing controller is developed in [8] to control of an overhead crane. Ahmad et al. [9] used a hybrid 
input-shaping method to control of the carne. Wahyudi and Jalani [10] employed fuzzy logic feedback 
controller to control an intelligent crane. Moreover, presented an optimal control method is used in [11] to 
control the dynamic motion of the system. Here in, minimum energy of system and integrated absolute error 
of payload angle are assumed as their optimization criterion. Zhao and Gao [12] studied the control of an 
overhead crane. They proposed a fuzzy method to control the input delay and actuator saturation of the 
system. Nazemizadeh et al. [13] studied tracking control of an underactuated gantry crane. Furthermore, 
Nazemizadeh [14] presented a PID tuning method for tracking control of a crane.  

In this paper, a LQR (Linear Quadratic Regulation) optimal method is implemented to control 
position of an overhead carne. To do this, a tracking formulation of LQR is developed and applied to the 
system. Hence the dynamic model of the overhead crane is presented, the dynamic of the actuator motor of 
the trolley is considered. As the parameters of the optimal controller assigned, some simulations are done to 
show the efficiency of the proposed method.  
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In this article, the position control of the overhead crane is studied based on optimal control strategy. 
The dynamic equations of the system are derived, considering the motor voltage of a wheel of the trolley as 
the input, and displacement of the trolley as the output of the crane. To control the position of the cart, an 
LQR method is used. To verify the proposed method, some simulation results are done and presented.  
 
 
2. LQR OPTIMAL CONTROL OF THE SYSTEM 

In this section, the LQR control method is applied to the system. Presume the dynamic equation of 
the overhead crane in state-space from can be written as: 
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Where X is the state vector of the system, u is the input effort, y is the output, and A, B, C are the coefficient 
matrices of the system. 

Furthermore the final position of the cart can be defined as r(t), and related to the final state vector eX and 

final input of the system eu  by Eq. (2): 
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Thus, combing Eqs. (1) , (2) results in: 
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Where ryyuuuXXX ee  ,,  are assumed as reformatted vectors.  

Furthermore, to apply the LQR optimal controller, an objective function is considered as follows:  
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 (4) 

 
Where Q and R are weighting matrices of optimal controller which is defined by the user.  

Using LQR method, the optimal feedback law is XPBRXKu T1 , where can be achieved from 
Riccati’s equation [15]: 
 

01   QPBPBRPAPA TT  (5) 

 
Where is defined as a positive matrix. 
 
 
3. DYNAMIC MODELING OF THE SYSTEM 

In this section, the dynamic modeling of the overhead carne is presented. The dynamic equations of 
the system are derived using Lagrange’s principle. Figure 1 shows an overhead crane. The crane is consists 
of a cart transverses in horizontal direction, while a pendulum connects on the cart and hoists the payload. 
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Figure 1. The overhead crane 
 
 

The parameters of the system are: xx ,  are the cart position and speed,  ,  are the pendulum 

angular displacement, l is the pendulum length, M is the mass of the cart, m is the payload mass, r is the 
radius of the wheels of the cart, e is the DC motor voltage of the cart, R is the motor armature resistance, k is 

the motor torque constant, pB  is the viscous damping coefficient of the pendulum axis,  eqB  is the 

equivalent viscous damping coefficient, and g is the gravitational constant of earth. 

To derive the equation of the motion, the kinetic energy of the cart 1T  and the kinetic energy of the 

pendulum 2T  are: 
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(6) 

Furthermore, the potential energy of the payload is: 
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To derive the dynamic equation of the system, the Lagrangian function is stated as: 
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And the damping force of the system is: 
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The Lagrange’s principle is written as: 
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Where jq
 

is the generalized coordinate of the system, jQ is the generalized force exerted to the 

corresponding generalized coordinate, and lostjQ ,  is the damping force. 

Then using Lagrange’s principle, the nonlinear equations of the system can be achieved [16]: 
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On the other hand, the linear force of the cart f is originated from the torque of the DC motor. Therefore, the 
related equations are: 
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Where T is the torque of the actuator, and   is the angular velocity of the motor. Thus, from Eqs. (11) and 
(12), we have: 
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To present the nonlinear equations of the system in state-space form, the state vector is defined as 

  


xxX  , and the nonlinear equations are: 

 

































































)cos(mlMl

Rr

xk

Rr

ke
cossing)mM(cossinml

)(
dt

d

tang
)cos(mM

Rr

xk

Rr

ke
ltangl)mM(sinml

x

)x(
dt

d
x














2

2

2
2

2

2

2
22

1

1













 

(14) 

 
Moreover, to Use LQR method, the linearization of the nonlinear equations must be done. Using the 
linearization method, the state-space linearized Equation of the systems are obtained as: 
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4. SIMULATIONS AND RESULTS 

In this section, the LQR control of the overhead crane is simulated. The parameters of the systems 
are: ml 3302.0 , kgM 073.1 , kgm 23.0 , mr 006.0 ,  6.2R e,  radVsk /00767.0 , Ve 12max  , 

and 2/81.9 smg   [17].  

As it is mentioned, the desired criterions of the control design are: the trolley can set the final position while 
the swaying of the pendulum is damped quickly, and the input voltage of the motor does not exceed its 
maximum value. For arbitrary Q and R weighting matrices, the LQR feedback controller gains are shown in 
Table 1. 

 
 

Table 1. LQR controller gains 
Controller gain R  Q  

 83742.097281.05735.11 K  1 )(diag 1  

 220280174220571390316230 ....K   1 ).(diag 10  

 72382790253898416233 ....K   10.  )(diag 1  

 
 

And the simulation results are depicted.  
 

 
 

Figure 2. The displacement of the cart 
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Figure 3. The displacement of the pendulum 

 

 
Figure 4. The voltage of the cart 

 
 
As it is seen in the forgoing figures, increasing the weighting of the state vector (Q), and decreasing the 
weighting of the input (R) leads to decreasing the maximum of the cart position and increasing of the 
maximum values of the input controller. Therefore, one can choose appropriate values of Q and R to obtain 
desired results. 
 
 
5. CONCLUSION 

In this paper, the position control of the overhead crane has been investigated using LQR optimal 
control method. At first, the nonlinear dynamic equations of the system have been derived via Lagrange’s 
principle, and then the dynamic of the DC motor has been applied to the system. The voltage of the actuator 
of the trolley has been assumed as the input, and displacement of the trolley has been presumed as the output 
of the system. To control the position of the cart, the LQR method has been developed and some simulations 
have been done. It is concluded that increasing the weighting of the state vector (Q) or decreasing the 
weighting of the input (R) leads to decreasing the maximum of the cart position and increasing of the 
maximum values of the input controller. Furthermore, simulation results properly demonstrated the power 
and efficiency of the proposed approach. 
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