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 In this paper, a novel online biped walking gait pattern generating method 
with contact consistency is proposed. Generally, it’s desirable that there is no 
foot-ground slipping during biped walking. By treating the hip of the biped 
robot as a linear inverted pendulum (LIP), a foot placement controller that 
takes the contact consistency into account is proposed to tracking the desired 
orbit energy. By selecting the hip’s horizontal locomotion as the parameter, 
the trajectories in task space for walking are planned. A task space controller 
without calculating the inversion of inertial matrix is presented. Simulation 
experiments are implemented on a virtual 5-link point foot biped robot. The 
results show the effectiveness of the walking pattern generating method 
which can realize a s table periodic gait cycle without slipping and falling 
even suffering a sudden disturbance. 
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1. INTRODUCTION  

Biped robots have aroused much attention over the past decades. But up to now, a biped walking 
robot that performs as well as human has not yet been made. To some extent, it indicates that the 
fundamental principles of biped walking are still not fully understood[1]. Generally, in order to focus on the 
dynamical characters of biped walking, it is assumed that the legs are terminated in points and no actuation is 
considered at the stance foot [2-4]. As a result, the Zero-Moment Point(ZMP) criterion can’t be used in the 
synthesis of walking pattern[5]. Additionally, slipping between the stance foot and ground is not expected, 
which means that the contact consistency should be preserved. The coupling between the actuated torques 
and the contact forces made the control problem a great challenge for researchers. 

Different approaches are proposed in literatures to handle biped walking control. By assuming the 
foot-ground impact is rigid and no slipping or rebounds occurs during walking, J.W. Grizzle and E.R. 
Westervelt et al. proved the existence and stability of periodic orbit for biped walking on a five-link, planar 
prototype RABBIT[6, 7]. Sentis et al. proposed an extension of operational space controllers for floating-
based robots, by projecting the operational tasks into the constraint null space, the violations between 
different tasks are avoided[8]. However, this approach requires the inversion of the system inertia matrix in 
the controller, which makes it s ensitive to modeling and parameter estimation errors[9]. Based on the 
orthogonal decomposition of the constraint Jacobian, Michael Mistry et al. proposed an inverse dynamics 
algorithm for legged robots, which expresses the inverse dynamics controller independently of contact forces 
and only requires the kinematic terms[10]. Recently, Salman Faraji et al. used such an approach to control a 
planar monopod hopper in rough terrain[11]. 
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Ludovic Righetti et al. demonstrated that the approaches of Sentis et al. and Michael Mistry et al. 
are equivalent in essence[12], since they (including J.W. Grizzle and E.R. Westervelt et al.)are all based on 
the assumption that the contact constraints, by definition, are able to apply necessary forces to maintain their 
consistency. However, the constraints may not be hold under certain situations especially for the robot with 
point foot. By adding additional torques to control the contact forces, Jaeheung Park and Ousssams Kahtib 
proposed a contact consistent control framework for humanoid robots[14]. But this approach also needs to 
calculate the inversion of the system inertia matrix. 

In order to generate walking gait that can preserve the contact consistency, by utilizing the Linear 
Inverted Pendulum Model(LIPM)[15],a novel online walking gait pattern generating method is proposed in 
this paper, and the complete control architecture is shown in Fig.1. 

Figure 1. Block diagram for the walking control 
 

In section 2, the relationship between the orbit energy and the foot location is discussed by 
analyzing the dynamics of a 2D-LIPM. With accounting for the restriction of the contact forces, a f oot 
placement controller is proposed to track the desired orbit energy. In section 3, we discuss the generation of 
the desired trajectories in task space for biped walking by selecting the hip’s horizontal locomotion as the 
parameter. In section 4, a t ask space controller without calculating the inversion of inertial matrix is 
presented. In section 5, we test the online walking pattern generating method and the task space controller on 
a virtual biped robot. Section 6 concludes the paper and provides the directions for future work. 
 
2. FOOT PLACEMENT CONTROLLER WITH CONTACT CONSISTENCY 

A planar 5-link point foot biped robot, as shown in Fig.2.(a), comprises two symmetric legsand a 
torso. From the viewpoint of natural human walking, it is  desirable that the torso is always upright with 
minimum hip’s vertical oscillation during walking. That is similar to a 2D-LIPM, which is described by 
Kajita et al.[15-17]. A 2 D-LIPM comprises a point mass and a telescoping massless leg with a point foot, 
which is in contact with the flat ground, as shown in Fig.2.(c). In this paper we model the motion of the biped 
robot’s hip as a 2D-LIPM. 

 
Figure. 2. A planar 5-link biped robot with one foot standing on the ground: (a) physical parameters of the 
robot; (b) generalized coordinates; (c) a 2D-LIPM approximates the motion of the biped robot’s hip. The 

LIPM comprised a point mass with mass  and a massless telescoping leg with point foot. The point mass is 
kept at constant height  by an actuator that exerts a force  on it. and are the tangential and 

normal component of the contact force between the point foot and the ground, respectively. 
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2.1 2D Liner Inverted Pendulum 
The equations of motion for the 2D-LIPM are[16, 17] : 

        (1) 

         (2) 

where  is the gravitational acceleration constant,  and  are the position of the point mass, expressed in 
a local frame which is located at the point foot,  is a constant. The orbit energy of the point mass is 
conserved during each stance phase, and it is defined as[15-17]: 

         (3) 

The orbit energy determines the behavior of the LIP when the point mass is moving toward the foot. 
There are three cases[1]: 

a. . The point mass will stop and reverse direction before getting over the foot. 
b. . The point mass will come to a rest exactly on the foot. 
c. . The point mass will go over the foot and continue on its way. 
Equation (3) indicates that the orbit energy is equivalent to the velocity when the point mass passes 

through the stance point. It means that with more orbit energy the point mass will move faster. So the biped 
walking control is an orbit energy tracking problem in essence. Additionally, Equation(3) shows that the orbit 
energy fully depends on the location of the foot relative to the point mass given a certain initial velocity. So 
the only way to change the point mass’s orbit energy is changing the foot location by taking a step. To clarify 
the analysis better, we assume each step is taken instantaneously and the velocity of the point mass will not 
be affected as shown in Fig.3.  

 
Figure 3. The moment when the 2D-LIPM is taking a step.  is the permitted maximum horizontal distance 
between the point mass and the foot in each stance phase, which means once the point mass arrives at  

a step must be taken.  is the horizontal distance between the desired foot location and the point mass 
when a step is being taken.  is the velocity of the point mass at that moment. 

 
Let  and  be the orbit energy of the point mass before and after the 2D-LIPM takes a step, 

respectively, i.e. 

         (4) 

         (5) 

Equation (5)minus (4) is 

        (6) 

Equation(6) clearly indicates that,  can change the orbit energy of the point mass for a given , 
and three typical cases are included: 

a. . The orbit energy will increase. 
b. . The orbit energy will not change, and the point mass will move exactly as in the 

previous stance phase. 
c. . The orbit energy will decrease. 
So, in order to realize the motion of the point mass with desired orbit energy, the foot location 

should be properly controlled for every step. 
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2.2 Foot Placement Controller 
For biped walking control, there are two questions to be answered: when a step should be taken? 

Where the foot should be placed? Here we will answer these questions by taking two practical restrictions 
account. 

First, in order to maintain the foot-ground contact without slipping, the magnitude of the tangential 
force ,c xF  must be less than ,c yFµ , i.e. : 

, ,c x c yF Fµ<           (7) 
where µ  is the coefficient of friction. From Fig.2(c), we can get 

, sinc xF F θ=           (8) 

, cosc yF F θ=           (9) 
Substituting equation (8) and (9)into (7), we have 

0

tan x
y

α µ= <          (10) 

That means a step must been taken before the point mass deviates from the foot with a magnitude of
0yµ . In order to change the orbit energewith a larger value. we let the foot change its location when the point 

mass arrives at X  , and set 
00.5X yµ=           (11) 

Second, due to the restriction of the actuator, there is a lower limit to the time between steps (foot 
location changes), minT  , which models the practical actuation ability of swing leg . 

From X  and minT  , we can get the upper limit of the orbit energy: 

2

2

0

2

1

min

c

min

c

T
T

max T
T

gX eE

y e

=
 
 −
 
 

         (12) 

From equation (3)and(4), we have 

( )22 2
0

0

1 1
2 2 2c x

gE x X x
y

−
=

= − =          (13) 

In equation(5), we let 
2 2

0

1
2 2des c des

gE E x L
y

+ = = −         (14) 

From equation (13)and (14),we can have: 

( )2 20
0

0

2 1
2 2des des ax

y gL x X E E
g y=

 
= ± + − = ± 

 
       (15) 

Note that, if  

( )2 2
0

0
des x

gE x X
y=

≥ +          (16) 

there will not be a positive solution for desL , that means the desired orbit energy is much largger than the 
current value, so that just take only one step cann’t let the point mass move with the desired orbit energy. In 
this situation our strategy is increasing the orbit energy step by step. 

If desL  ,calculated from equation (15), is larger than 0yµ , i.e. 

0desL yµ≥           (17) 
Which means the desired orbit energy is much less than the current value, so that a long step must 

be taken, which may violates the restriction on contact force. In this situation our strategy is decreasing the 
orbit energy step by step. 

From the viewpoint of natural human walking, it’s desirable that the swing foot always lands in 
front of the body. Consiering all the conditions as (11), (12) ,(16) and (17), we design desL as 



IJRA  ISSN: 2088-8708  
 

Online Biped Walking Pattern Generation with Contact Consistency (Hou Wenqi)

23 

0.6 , 0 0.6

1.6 , 1.6

,0.6 1.6

a a

des a

a a

X E or E X

L X E X

E X E X

 ≤ ≤
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       (18) 

Theorem 1 : For the 2D LIPM with point foot, a foot placement controller as shown in equations (11)and (18) 
can control the point mass move from any permitted state(i.e. the orbit energy is less than the upper limit) 
into a d esired periodic gait(i.e. the orbit energy is equal to the desired one with a p ermitted value) with 
contact consistency. 

Theorem 1 means when the point mass even suffers a sudden disturbance (e.g. a sudden push) 
during the motion, if the orbit energy doesn’t exceed maxE , the designed foot placement controller can 
stabilize the motion. 

Equation (11) answers the question :when a s tep shuold be taken ? Which prevents the contact 
consistency during walking. And equation (18) answers the question :where the foot shuold be placed ? 
Which achieves a desired walking cycle. 

 
 

3. ONLINE TRAJECTORIES PLANNING IN TASK SPACE 
In this section we will discuss the planning of the desired trajectories in task space during biped 

walking based on the foot placement controller in section 2. 
As mentioned above, the torso’s pitch angle and the hip’s height should be stablized to constants 

during walking. Addtionally, the swing leg plays an indispensable role, and its main task includes taking off 
from the ground, moving forward and landing to a deliberate location, and then via changing its role as a 
stance leg to continue the walking. So the task space during biped walking can be selected as: 

; ; ;tsk hip swt swtP y x yθ =            (19) 

whereθ  is the pitch angle of the torso, hipy  is the height of the hip, swtx and swty are the horizontal 
and virtical component of the position of the swing foot. It’s clear that the tasks in (19) are linearly 
independent. 

The desired pitch angle of the torso and the height of the hip are set as: 
= =0

, 0
des des des
des des des
hip hip hipy H constant y y

θ θ θ =


= = = =

 

 

       (20) 

Figure 4 illustrates a desired stance phase during walking. The hip moves as a 2D LIP, and P  is the 
desired location where the stance foot should be placed in next stance phase caculated by equation (18).The 
dash-dotted line denotes the desired trajectory of the swing foot. The trajectories can be planned as a function 
of time[11, 18] or the geometric evolution of the biped[19, 20]. In order to withstand a disturbence robustly 
the latter option is adopted in this paper. During walking, the horizontal location of hip hipx  is monotonically 
increasing, so it can be selected as the parameter of desired trajectories.  

x

y

o
h

H

a b c
desL′

desL
P

XX

 
Figure 4. A desired stance phase contain three crucial moments: (a), the beginning of a stance phase, i.e. the 
moment just after the swing leg became the stance leg; (b), the moment when the hip pass though the stance 

point; (c), the moment when the hip arrives at X . The dashed line denotes swing leg and the solid line denote 
stance leg.  

Let ( ) ( );des des des
swt swt hip swt hipP x x y x =    be the desired position of the swing foot in the local frame located 

at the point foot. There are three crucial moments in one stance phase as shown in Fig.4.  
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The constraint equations for the desired trajectories are described as follows: 
(a). The beginning of a stance phase: 

( ) ( )
( ) 0

des
desswt desdes

swt des des
swt des

L Xx L
P L

y L
′′  − −−  ′− = =   ′−   

       (21) 
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





        (22) 

(b). The moment when the hip pass though the stance point: (Let h  be the maximum clearance of 
the swing leg): 

( ) ( )
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        (23) 
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(c). The moment when the hip arrives at X  : 

( ) ( )
( ) 0
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X Lx X
P X

y X
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       (25) 
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
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        (26) 

Using a sinusoidal function of hipx , the desired trajectory of swing foot is planned as follows: 

( )
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( ) ( ]
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2

sin , 0,
2
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desrd
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      (28) 

Where desL  and desL′  are the horizontal distance between the desired foot location and the hip in the 
current and the former step, respectively, as shown in Fig. 4. 

 
 

4. ROBOT MODEL AND TASK SPACE CONTROLLER 
In this section, the dynamics of a planar 5-link point foot biped is introduced and a task space 

controller based on the dynamics model is designed to realize the trajectories presented by (20),(27)and (28). 
As shown in Fig.2.(b), if there is no motion between the stance foot and the ground [2, 6, 10, 21], 

and the origin of the local reference frame is located at the point foot, a set of generalized coordinate of the 
biped robot can be selected as: 

[ ];e rq q θ=           (29) 

Where [ ]1 2 2 1; ; ;r r r l lq θ θ θ θ=  is the joint configuration of the robot. and θ is the pitch angle of the 
torso in the local frame. 

Using the Lagrange method, we can get the dynamics of the robot[22]: 
( ) ( ) ( ), T

e e e e e eM q q C q q q G q S τ+ + =          (30) 

where ( ) 5 5
eM q R ×∈  is the inertia matrix of the robot, ( ) 5 5,e eC q q R ×∈ is the centripetal and Coriolis 

forces, ( ) 5 1
eG q R ×∈  is the gravity forces, [ ]4 4 4 10S I × ×=  is the selecting matrix of the actuated joints,

4 1Rτ ×∈  is the vector of actuated joint torques. 
Let ( )tsk eP f q=  , the task velocities can be calculated as: 
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tsk e tsk e
e

fP q J q
q
∂

= =
∂



           (31) 

If ( ) 4tskrank J =  , by using the Moore-Penrose pseudo-inverse of the task Jacobian[23] : 
#

e tsk tskq J P= 

           (32) 

( )#
# tsk

e tsk tsk tsk

d J
q J P P

dt
= + 

          (33) 

where ( ) 1# T T
tsk tsk tsk tskJ J J J

−
= . Substituting (32)and(33) into(30), the dynamics in task space can be expressed as: 

( ) ( )
( )

( )
#

# #, tsk T
e tsk tsk e e tsk tsk e

d J
M q J P C q q J P G q S

dt
τ

 
 + + + =
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 

      (34) 

Multiplying equation (34)by S   : 

tsk tskMP CP G τ+ + =             (35) 

where ( ) #
e tskM SM q J=  , ( ) ( )

( )#
#, tsk

e e tsk e

d J
C S C q q J M q

dt

 
 = +
  



  , ( )eG SG q= . 

Equation (35) means the full dynamcis of the robot can be represent by the top portions of the 
equation (34)[10].A task space PD type controller can be designed as: 

( )des
tsk tsk P tsk D tskMP CP G M K e K eτ = + + − +    

        (36) 

Where des
tsk tsk tske P P= −  , des

tsk tsk tske P P= − 

  . 
Note that the controller(36)doesn’t need to calculate the inversion of inertial matrix, which is more 

convenient than the method of [13, 14]. And it i s similar to the controllersof[10, 21], in which the task 
spaceJacobian should take the contact constraints into account. Here the contact constraints are considered in 
equation(30), thus the controller is more convenient to implement. 

 
 

5. SIMULATION AND DISCUSSIONS 
Simulation experiments are implemented in MATLAB. By using the “SimMechanics” toolbox, a 

virtual 5-link planar biped robot with two symmetric legs is built as shown in Fig.5. The physical parameters 
of the robot are shown in Table 1, and walking is beginning with the initial states shown in Table2. 

 
Figure 5. A virtual 5-link planar biped robot 

 
Table 1. Physical parameters of the virtual biped robot 

Model parameter Units Torso Thigh Shank 
Mass kg  18.84 5.024 5.024 

Length m  0.3 0.4 0.4 
Inertia 2kg m⋅  0.2041 0.06766 0.06766 

Mass center to the joint m  0.1 0.2 0.2 
 

Table 2. Initial states of the virtual biped robot. Set the right leg as the stance leg initially. 
 1rθ   2rθ   1lθ   2lθ   θ   hipx   hipy   swtx   swty   

( ),q rad m   0.7108 -0.3554 0.9578 -0.4789 0 0 0.75 0 0.04 

( )/ , /q rad s m s   0 0 0 0 0 0 0 0 0 
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In simulation, we set the desired height of hip 0.75H m= . With different desired orbital energies 
( 0desE = and 0.5desE = ), the simulation results validate the online walking pattern generating method and the 
task space controller. A horizontal disturbance with magnitude of 100N  is imposed on the center of the torso 
at 2.5s, and it lasts for 0.1s. A nonlinear compliant contact model with Coulomb friction is used to model the 
contact forces between the robot’s foot and the ground as described in[4, 24]. 

Fig. 6 shows the orbit energy of the hip in 8 seconds.With the initial configuration in Table 2, the 
robot’s COM is locating at the right side of the stance point, due to the gravity the robot will move forward, 
that is the primary actuation of the walking. So even when the hip’s orbit energy is zero, the robot will not 
come to a stop as the blue line shown in Fig.6. It can be found that the orbit energy of the hip is not a 
constant during any stance phase. That is because the legs are not massless, especially the swing leg. While 
the ideal LIPM assumes the legs are massless. Nevertheless, the robot walks with a periodic gait even 
suffering the sudden disturbance. 

 

 
Figure.6 The orbit energy of the hip during walking. The green lines denote the desired orbit energy. The 

solid lines denote the orbit energy of the hip 
 

The tangential component of the contact force of the right foot during walking is shown in Fig.7 
with solid lines, and the green dashed lines denote the bound of friction force which is calculated by 
multiplying the normal component of the contact force with the coefficient of friction used in the contact 
model. When the solid lines (red or blue) locate inside the range formed by the zero grid line and the green 
dashed line, it means the friction force locate inside the friction cone, thus the contact consistency is 
preserved. 

 
Figure 7. Effects of selecting different switching under dynamic condition 

 
Considering the practical restriction of the actuators, in simulation we impose upper and lower 

limits on the actuation torques as shown in Fig.8 and Fig.9. 
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Figure 8. Actuation torque of each link during walking when 0desE =  

 

 
Figure 9. Actuation torque of each link during walking when 0.5desE =  

 
 
6. CONCLUSION 

In this paper, we address the issue of walking control of a p lanar biped robot with contact 
consistency. By modeling the motion of the hip as a 2D-LIPM, a foot placement controller which can 
preserve the contact consistency is proposed to track the desired orbit energy. By selecting the hip’s 
horizontal locomotion as the parameter, the walking pattern is generated on the real time. A task space PD 
type controller without calculating the inversion of inertial matrix is designed to realize the biped walking. 
Simulation result shows the proposed method not only can control the robot walking into periodic gait, but 
also can withstand a sudden disturbance. The future work will focus on extending the method into a 3D biped 
robot. 
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APPENDIX 
A. Proof of theorem 1： 

Case 1: 
When 0 0.6a aE or E X≤ ≤  , let 0.6desL X=  , substitute it into equation (6) 

2

0

0.32gE E E X constant
y

+ −∆ = − = =        (37) 

That means when the current orbit energy is much less than the desired one, we take a step such that 
the orbit energy increase with a constant value. For the desired orbit energy is finite, so after taking finite 
steps, e.g. N  , we can have: 

2

0

0.320,N des N
gE E E X

y
 

∆ = − ∈ 
 

        (38) 

where NE  is the orbit energy when ( )1 2N ，，  steps have been taken. Then we have: 

( ) ( ]202
0.6a N des

y
E E E X X X

g
= − + ∈ ，       (39) 

For the next step the point mass will come to case 3. 
Case 2: 
When 1.6aE X≥  , let 1.6desL X=  , substitute it into equation(6): 

2

0

0.78gE E E X constant
y

+ −∆ = − = − =        (40) 

That means when the current orbit energy is much bigger than the desired one, we take a step such 
that the orbit energy decrease with a constant value. For the desired orbit energy is finite, so after taking 
finite steps , e.g. M  , we can have: 

2

0

0.78 ,0M des M
gE E E X

y
 

∆ = − ∈ − 
 

       (41) 

where ME  is the orbit energy when ( )1,2,M   steps have been taken. Then we have: 

( ) [ )202
,1.6a M des

y
E E E X X X

g
= − + ∈        (42) 

For the next step the point mass will come to case 3, too. 
Case 3: 
When 0.6 1.6aX E X< <  , let des aL E=  ,substitute equation (15) into(6): 

0E E E+ −∆ = − =          (43) 
That means when the point mass take a step to the desired location, the orbit energy will be equal to 

the desired one.  
From equation (15), we can see that when the current orbit energy is equal to the desired one,

desL X≡  Then from equation (3)，
x X

x constant
=

≡ , and then from equation(45), the period of stance phase 
is a constant too. 

Note that no matter the cases,  
00.6 1.6 0.8desX L X yµ≤ ≤ =         (44) 

That means the contact force restriction(10) will always be satisfied. 
Above all, we can conclude that the designed X  and desL  can control the point mass move from any 

permitted state into a period gait with contact consistency. 
 

B. Derivation of the maximum value of orbit energy maxE   

Given an initial state ( ) ( )( )0 , 0x x  and the final state ( ) ( )( ),x t x t , the transition time can be 
caculated as [17]: 

( ) ( )
( ) ( )

ln
0 0

c
c

c

x t T x t
t T

x T x
+

=
+





         (45) 
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where 0
c

y
T

g
=  . Note that the two states must have a same orbit energy, i.e. 

( ) ( ) ( ) ( )2 2 2 2

0 0

1 10 0
2 2 2 2

g gx x x t x t
y y

− = −         (46) 

Supposing the point mass is locating at X− , moving toward the foot with the permitted maximum 
velocity X , after minT , it will arrive at X  with the permitted maximum velocity X , from equation(45), we 
have 

ln c
min c

c

X T X
T T

X T X
 +

=  − + 





         (47) 

Solving X in (47) 

1

1

min

c

min

c

T
T

T
T

c

e X

X

e T

 
 +
 
 =
 
 −
 
 

          (48) 

From equation (3), the permitted maximum value of the orbit energy is 

2

2

0

2

1

min

c

min

c

T
T

max T
T

gX eE

y e

=
 
 −
 
 

         (49) 
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