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 Formation control is an important behavior for multi-agents system 
(swarm). This paper addresses the optimal tracking control problem 
for swarm whose agents are ships moving together in a specific 
geometry formation. We study formation control of the swarm model 
which consists of three agents and one agent has a role as a leader. 
The agents of swarm are moving to follow the leader path. First, we 
design the control of the leader with Pontryagin Maximum Principle. 
The control of the leader is designed for tracking the desired path. 
We show that the tracking error of the path of the leader tracing a 
desired path is sufficiently small. After that, geometry approach is 
used to design the control of the other. We show that the positioning 
and the orientation of each agent can be controlled dependent on the 
leader. The simulation results show to illustrate of this method at the 
last section of this paper. 
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1. INTRODUCTION 

In recent years, there have been an increasing number of researches on the subject of underactuated 
vehicle. The example of underactuated vehicle we will focus on is a surface vessel (ship) moving to track a 
desired path. The tracking problem is a challenging problem in surface vessel. Some researchers have 
discussed the control design of a surface vessel to track a desired path in [1], [3], [5], [7]. In [1], the authors 
study the tracking problem of underactuated surface vessel using adaptive control. They design a continuous 
time-varying tracking controller that forces the position/orientation tracking error to an arbitrarily small 
neighborhood about zero in the presence of uncertainty in the hydrodynamic damping coefficients. In [3], the 
authors study the problem of position tracking of underactuated vehicles in both two and three-dimensional 
spaces. The main contribution is a design methodology to construct a nonlinear tracking controller that yields 
global stability and exponential convergence of the position tracking error to a neighborhood of the origin 
that can be made arbitrarily small. Furthermore, the desired trajectory does not need to be a trimming 
trajectory and can be any sufficiently smooth time-varying bounded curve, including the degenerate case of a 
constant trajectory (set-point). In [5], the authors study the control design and the tracking problem for a 
nonlinear underactuated system. They describe how to use backstepping to develop control laws to perform 
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trajectory tracking for a nonlinear, underactuated surface vessel. His research extends earlier backstepping 
designs for underactuated vessels by explaining how to select outputs when generalized forces act on the 
vessel. In [7], the authors consider tracking control of a surface vessel with only two control inputs. They 
discuss tracking control of both the position variables and the course angle of the surface vessel. They thus 
seek to control angle degrees of freedom with only two control inputs variable.  

In [10], the author studies the problem of controlling the planar position and orientation of an 
autonomous surface vessel using two independent thrusters. He shows that although the system is not 
asymptotically stabilizable to a given equilibrium solution using a time-invariant continuous feedback, it is 
strongly accessible and small-time locally controllable at any equilibrium and, hence, the system is 
asymptotically stabilizable to a desired equilibrium using time-invariant discontinuous feedback laws. In [2], 
the authors consider a linear system with delay in state and control with both matched and unmatched 
perturbations. They apply the block control technique to design a sliding mode regulator that guarantees 
asymptotic reference tracking for a class of linear delayed systems with disturbances. This class of systems is 
those presented in so-called block controllable form with delay. The block control technique is used to derive 
a sliding manifold on which the motion of the closed-loop system is stable, and the tracking error is zeroed. 
In [4], an adaptive tracking control problem is studied for a four wheel mobile robot. The authors propose a 
formulation for the adaptive tracking problem that meets the natural prerequisite such that it reduces to the 
state feedback tracking problem if the parameters are known. They derive a general methodology for solving 
their problem.  

In [9], the authors study the formation control of swarm whose agents are Dubin’s cars. The agents 
of swarm are moving to track a desired path. They consider the swarm model with presence of a leader. First, 
they design the control of the leader with tracking error dynamics. The control of the leader is designed for 
tracking the desired path. After that, geometry approach is used to design the control of the other. In [8], 
Miswanto et al. study the tracking problem of a swarm model with the presence of a leader by using the least 
square method. That model is a control system which consists of many agents and one agent has a role as a 
leader. The control of optimal motion of the leader is obtained by using the least square method. In particular, 
this control steers the leader to trace a desired path. In [6], Tang et al. study optimal output tracking control 
(OOTC) problem for a class of bilinear systems with a quadratic performance index using a successive 
approximation approach (SAA). They develop a design process of the OOTC law based on the SAA for 
bilinear system.   

In this paper we consider formation control of the swarm model whose agents are ships moving 
together in a specific geometry formation. In this model, one ship has a role as a leader. The control of the 
leader is designed for tracking the desired path. We show that the tracking error of the path of the leader 
tracing a desired path is sufficiently small and the distance between the leader ship path and the desired path 
is preserved. In the next section, the formal problem formulation is described. In section 3, we design the 
control of the leader ship using Pontryagin Maximum Principle. In section 4, we design the control of each 
agent follower using geometry approach. In section 5, we show numerical simulations to illustrate our results. 
 
 
2. PROBLEM FORMULATION 

In this section, we introduce the dynamic system of the model ship as shown in Figure 1. 
 
 

 
 

Figure 1. The model ship 
 
 



IJECE  ISSN: 2088-8708  
 

The Control Design of Formation Ship with the Presence of a Leader (Miswanto) 

55

In this paper, the dynamics system of ship is taked from Tzeng and Chen model. They only discuss one ship 
and in this paper discuss for three ships which described as: 
 

																																	

ሻݐሶ௜ሺݔ ൌ ሻ൯ݐ௜ሺtሻcos൫߰௜ሺݑ െ ሻሻݐ௜ሺtሻsinሺ߰௜ሺݒ

ሻݐሶ௜ሺݕ ൌ ሻ൯ݐ௜ሺtሻsin൫߰௜ሺݑ ൅ ሻሻݐ௜ሺtሻcosሺ߰௜ሺݒ
ሶݑ ௜ሺݐሻ ൌ 0																																																													
ሻݐሶ௜ሺݒ ൌ 0																																																												
ሶ߰ ௜ሺݐሻ ൌ 																																																						ሻݐ௜ሺݎ
ሻݐሶ௜ሺݎ ൌ െ0.0562ݎ௜ሺݐሻ ൅ 																					ሻݐ௜ሺߜ

											݅ ൌ 1,2,3																																																				ሺ1ሻ 

Where ሺݔ௜ሺݐሻ, ሻሻݐ௜ሺݕ ∈ ܴଶ represents the position of the i-th ship, and ߰௜ሺݐሻ ∈ ሾ0,2ߨሿ represents the 
orientation of the i-th ship. ݑ௜ሺݐሻ are velocities in surge of the i-th ship, ݒ௜ሺݐሻ are velocities in sway of the i-th 
ship, ݎ௜ሺݐሻ are yaw rate of the i-th ship and ߜ௜ሺݐሻ are ruder angle of the i-th ship. In this paper, the desired 
path ሺߛሻ that would be tracked by the leader ship is obtained using calculus variational method. The path is 

denoted by ߛሺݐሻ ൌ ,ሻݐ௫ሺߛൣ ሻ൧ݐ௬ሺߛ
்
. 

In this paper, there are two problems which will be discussed. First, we design the control of the leader 
ship for tracking the desired path by Pontryagin Maximum Principle. Furthermore, we design the control of 
the other agents by geometry approach to follow the leader's path with a certain distance. 

 
 

3. THE CONTROL DESIGN OF THE LEADER SHIP 
We consider a model of the leader ship, such as (1). We design the control of the leader ship by 

Pontryagin Maximum Principle for minimizing the tracking error in order to keep the position of the leader 
ship close to the desired path. We define a tracking error e(t) as the difference between the actual leader ship 
path and the desired path 

         ݁ሺݐሻ ൌ ቂݔଵ െ ,௫ߛ 1ݕ െ ቃݕߛ
்
.																																																																	ሺ2ሻ 

Thus, e(t) lives in ܴଶ for every t. The original problem is translated to the following optimal control problem. 
We search for ሺߜଵሺݐሻሻ that makes the following functional minimized,  

ܬ																																																	 ൌ
1
2
නሺߜଵ

ଶ ൅ ݇‖݁‖ଶሻ݀ݐ.

்

଴

																																																															ሺ3ሻ	

The term ߜଵଶ represents the total cost of the control used by the leader ship and ݇‖݁‖ଶ represents the total 
error. In this paper, the value of the constant k is restricted to ݇ ൌ 1. Now, the Hamiltonian function of the 
system is 

ܪ								 ൌ ሶଵݔଵ݌ ൅ ሶଵݕଶ݌ ൅ ሶଵݑଷ݌ ൅ ሶଵݒସ݌ ൅ ହ݌ ሶ߰ଵ ൅ ሶଵݎ଺݌ ൅
1
2
ଵߜ଴ሺ݌

ଶ ൅ ݇‖݁‖ଶሻ.																						ሺ4ሻ 

Using this function, we build the Hamiltonian system: 
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ܪ߲

1݌߲
ൌ ሶݔ 1ሺݐሻ ൌ 1ሺtሻcosݑ ቀ߰1

ሺݐሻቁ െ 1ሺtሻsinݒ ቀ߰1
ሺݐሻቁ																																													

ܪ߲

2݌߲
ൌ ሶݕ 1ሺݐሻ ൌ 1ሺtሻsinݑ ቀ߰1

ሺݐሻቁ ൅ 1ሺtሻcosݒ ቀ߰1
ሺݐሻቁ																																													

ܪ߲

3݌߲
ൌ ሶݑ 1 ൌ 0																																																																																																																												

ܪ߲

4݌߲
ൌ ሶݒ 1 ൌ 0																																																																																																																													

ܪ߲

5݌߲
ൌ ሶ߰
ሶ

1

ሺݐሻ ൌ 																																																																																																														ሻݐ1ሺݎ

ܪ߲

6݌߲
ൌ ሻݐሶ1ሺݎ ൌ െ0.05621ݎሺݐሻ ൅ 																																																																														ሻݐ1ሺߜ

ܪ߲

1ݔ߲
ൌ െ݌ሶ 1ሺݐሻ ൌ 0݌ ቀ1ݔሺݐሻ െ 																																																																														ሻቁݐሺݔߛ

ܪ߲

1ݕ߲
ൌ െ݌ሶ 2ሺݐሻ ൌ 0݌ ቀ1ݕሺݐሻ െ 																																																																													ሻቁݐሺݕߛ

ܪ߲

1ݑ߲
ൌ െ݌ሶ 3ሺݐሻ ൌ ሻcosݐ1ሺ݌ ቀ߰1

ሺݐሻቁ ൅ ሻsinݐ2ሺ݌ ቀ߰1
ሺݐሻቁ																																							

							ሺ5ሻ 

ܪ߲

1ݒ߲
ൌ െ݌ሶ 4ሺݐሻ ൌ െ1݌ሺݐሻsin ቀ߰1

ሺݐሻቁ ൅ ሻcosݐ2ሺ݌ ቀ߰1
ሺݐሻቁ																																																		

ܪ߲

߲߰1

ൌ െ݌ሶ 5ሺݐሻ ൌ െ1݌ሺݐሻ ൬1ݑሺݐሻ1ݎሺݐሻsin ቀ߰1
ሺݐሻቁ ൅ ሻcosݐ1ሺݎሻݐ1ሺݒ ቀ߰1

ሺݐሻቁ൰																

																																			൅2݌ሺݐሻ ൬1ݑሺݐሻ1ݎሺݐሻcos ቀ߰1
ሺݐሻቁ െ ሻsinݐ1ሺݎሻݐ1ሺݒ ቀ߰1

ሺݐሻቁ൰
																		

ܪ߲

1ݎ߲
ൌ െ݌ሶ 6ሺݐሻ ൌ ሻݐ5ሺ݌ െ 																																																																																									ሻݐ6ሺ݌0.0562

 

 
 
By the Pontryagin Maximum Principle, the value of H must be optimized with respect to the control 

ሺߜଵሻ. Thus 
డு

డఋభ
ൌ ሻݐ଺ሺ݌ ൅ ሻݐଵሺߜሻݐ଴ሺ݌ ൌ 0, since 0p must be constant and negative, without loss of 

generality, we let 0 1p   . Thus, we obtain the control ߜଵሺݐሻ ൌ  ሻ. Then, this control is substituted inݐ଺ሺ݌

(5). Thus, we obtain a system of differential equations: 
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ሶݔ 1ሺݐሻ ൌ 1ሺtሻcosݑ ቀ߰1
ሺݐሻቁ െ 1ሺtሻsinݒ ቀ߰1

ሺݐሻቁ																																																					

ሶݕ 1ሺݐሻ ൌ 1ሺtሻsinݑ ቀ߰1
ሺݐሻቁ ൅ 1ሺtሻcosݒ ቀ߰1

ሺݐሻቁ																																																					

ሶݑ 1ሺݐሻ ൌ 0																																																																																																																						

ሶݒ 1ሺݐሻ ൌ 0																																																																																																																							
ሶ߰
1
ሺݐሻ ൌ 																																																																																																																	ሻݐ1ሺݎ

ሻݐሶ1ሺݎ ൌ െ0.05621ݎሺݐሻ ൅ 																																																																															ሻݐ6ሺ݌

ሶ݌ 1ሺݐሻ ൌ ݇ ቀ1ݔሺݐሻ െ 																																																																																								ሻቁݐሺݔߛ

ሶ݌ 2ሺݐሻ ൌ ݇ ቀ1ݕሺݐሻ െ 																																																																																							ሻቁݐሺݕߛ

ሶ݌ 3ሺݐሻ ൌ െ1݌ሺݐሻcos ቀ߰1
ሺݐሻቁ െ ሻsinݐ2ሺ݌ ቀ߰1

ሺݐሻቁ																																																		

ሶ݌ 4ሺݐሻ ൌ ሻsinݐ1ሺ݌ ቀ߰1
ሺݐሻቁ െ ሻcosݐ2ሺ݌ ቀ߰1

ሺݐሻቁ																																																					

ሶ݌ 5ሺݐሻ ൌ ሻݐ1ሺ݌ ൬1ݑሺݐሻ1ݎሺݐሻsin ቀ߰1
ሺݐሻቁ ൅ ሻcosݐ1ሺݎሻݐ1ሺݒ ቀ߰1

ሺݐሻቁ൰																			

																					െ2݌ሺݐሻ ൬1ݑሺݐሻ1ݎሺݐሻcos ቀ߰1
ሺݐሻቁ െ ሻsinݐ1ሺݎሻݐ1ሺݒ ቀ߰1

ሺݐሻቁ൰

ሶ݌ 6ሺݐሻ ൌ ሻݐ6ሺ݌0.0562 െ ݌
5
ሺݐሻ																																																																																														

ሺ6ሻ 

Initial and final conditions of the state variables ሾݔଵ, ,ଵݕ ,ଵݑ ,ଵݒ ߰ଵ,  ଵሿ்are known. However, theݎ
costate equations ሾ݌௜	; ݅ ൌ 1,2, …6ሿ் does not have initial condition. So, the solution of the system of 
differential equation is difficult to obtain. This paper proposes the steepest gadient descent method. This 
method is used to approximate the initial condition of the costate variables in the system of differential 
equation. First, the initial value of state variables are given by ݔ௜ሺ0ሻ ൌ ;௜଴ݔ ݅ ൌ 1, 2, 3, 4, 5, 6 and the initial 
value of costate variables are arbitrarily guessed by ݌௜ሺ0ሻ ൌ ;௜଴ݍ ݅ ൌ 1, 2, 3, 4, 5, 6. The values are used to 
solve the system of differential equation. Next, we calculate

 
6

2
10 20 30 40 50 60

1

, , , , , ( )i iT
i

F q q q q q q x T x


  , where ( )ix T  is obtained from the solution of the 

system of differential equation and iTx is the final conditions of the state variables. Afterwards, we 

determine the value of the new  10 20 30 40 50 60, , , , ,q q q q q q by using the steepest gradient descent 

method, such as in Tjahjana [7]. The value is used to make the new  10 20 30 40 50 60, , , , ,F q q q q q q less 

than the old  10 20 30 40 50 60, , , , ,F q q q q q q . The process is done repeatedly until the value of 

 10 20 30 40 50 60, , , , ,F q q q q q q is small enough. 

 
 

4.  THE CONTROL DESIGN OF THE FOLLOWING AGENTS 
In this section, we design the control of the follower using geometry approach. Figure 2 shows the 

position of the three ships. Where ݀1 and ݀2 are the distance of the follower ship to the leader ship. ߠଶ and ߠଷ 
are the orientation of the follower ship to position of the leader ship. In this paper, ߠଶ and ߠଷ are assumed to 
be constant. 

 
4.1.  The Control Design of The First Follower Ship 

From the Figure 2, we have 

           
ሻݐଵሺݔ െ ሻݐଶሺݔ ൌ ݀ଵsinሺ߰ଶሺݐሻ െ ଶሻߠ
ሻݐଵሺݕ െ ሻݐଶሺݕ ൌ ݀ଵcosሺ߰ଶሺݐሻ െ ଶሻߠ

                                                                 (7) 
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Figure 2. The Position of Three Ships 
 
 

Differentiating the equations above with respect to time, we obtain 

   
ሻݐሶଵሺݔ െ ሻݐሶଶሺݔ ൌ ݀ଵcosሺ߰ଶሺݐሻ െ ଶሻ൫ߠ ሶ߰ ଶሺݐሻ െ 					ሶଶ൯ߠ

ሻݐሶଵሺݕ െ ሻݐሶଶሺݕ ൌ െ݀ଵsinሺ߰ଶሺݐሻ െ ଶሻ൫ߠ ሶ߰ ଶሺݐሻ െ ,ሶଶ൯ߠ
																																												ሺ8ሻ 

because ߠଶ assumed to be constant, then the system of equations (8) above can be written 
as 

      																										
ሻݐሶଵሺݔ െ ሻݐሶଶሺݔ ൌ ݀ଵݎଶሺݐሻcosሺ߰ଶሺݐሻ െ 					ଶሻߠ
ሻݐሶଵሺݕ െ ሻݐሶଶሺݕ ൌ െ݀ଵݎଶሺݐሻsinሺ߰ଶሺݐሻ െ 	ଶሻߠ

																																																																			ሺ9ሻ 

Thus, we obtain 

																																		
ሺݔሶଵሺݐሻ െ ሻݐcosሺ߰ଶሺ	ሻሻݐሶଶሺݔ െ 																																																																																						ଶሻߠ
																																			െ൫ݕሶଵሺݐሻ െ ሻݐsinሺ߰ଶሺ	ሻ൯ݐሶଶሺݕ െ ଶሻߠ ൌ ݀ଵݎଶሺݐሻ																								ሺ10ሻ

 

Differentiating the equations (10) above with respect to time, we obtain, 

ሺݔሷଵሺݐሻ െ ሻݐcosሺ߰ଶሺ	ሻሻݐሷଶሺݔ െ ଶሻߠ െ ሻݐሶଵሺݔሻሺݐଶሺݎ െ ሻݐሻሻsinሺ߰ଶሺݐሶଶሺݔ െ 																																ଶሻߠ
െሺݕሷଵሺݐሻ െ ሻݐsinሺ߰ଶሺ	ሻሻݐሷଶሺݕ െ ଶሻߠ െ	ݎଶሺݐሻ൫ݕሶଵሺݐሻ െ ሻݐcosሺ߰ଶሺ	ሻ൯ݐሶଶሺݕ െ 									ଶሻߠ

																																																																			ൌ ݀ଵ൫െ0.0562ݎଶሺݐሻ ൅ .ሺ11ሻ																																																				ሻ൯ݐଶሺߜ
 

Substituting system (1) for i = 2 in the equation (11), one obtain 

ሻݐଶሺߜ ൌ 																																																																																																																																													ሻݐଶሺݎ0.0562

൅
ሻݐሻsinሺ߰ଶሺݐଶሺݑሻ൫ݐଶሺݎ2 ൅ ߰ଶሺݐሻ െ ଶሻߠ ൅ ሻݐሻcosሺ߰ଶሺݐଶሺݒ ൅ ߰ଶሺݐሻ െ ଶሻ൯ߠ

݀ଵ
															

																														
െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଵሺݎ ൅ ߰ଶሺݐሻ െ ଶሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଶሺݐሻ െ ଶሻ൯ߠ

݀ଵ

െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଶሺݎ ൅ ߰ଶሺݐሻ െ ଶሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଶሺݐሻ െ ଶሻ൯ߠ

݀ଵ

																	ሺ12ሻ

 

Then, this control ሺߜଶሻ is substituted to the system (1) with ݅ ൌ 2. Thus, we obtain a system of the differential 
equations of the first follower 
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ሻݐሶଶሺݔ ൌ ሻ൯ݐଶሺtሻcos൫߰ଶሺݑ െ 																																																																				ሻሻݐଶሺtሻsinሺ߰ଶሺݒ

ሻݐሶଶሺݕ ൌ ሻ൯ݐଶሺtሻsin൫߰ଶሺݑ ൅ 																																																																				ሻሻݐଶሺtሻcosሺ߰ଶሺݒ
ሶݑ ଶሺݐሻ ൌ 0																																																																																																																																				
ሻݐሶଶሺݒ ൌ 0																																																																																																																				ሺ13ሻ										
ሶ߰ ଶሺݐሻ ൌ 																																																																																																																																ሻݐଶሺݎ

ሻݐሶଶሺݎ ൌ
ሻݐሻsinሺ2߰ଶሺݐଶሺݑሻ൫ݐଶሺݎ2 െ ଶሻߠ ൅ ሻݐሻcosሺ2߰ଶሺݐଶሺݒ െ ଶሻ൯ߠ

݀ଵ
																										

														െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଵሺݎ ൅ ߰ଶሺݐሻ െ ଶሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଶሺݐሻ െ ଶሻ൯ߠ

݀ଵ

													െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଶሺݎ ൅ ߰ଶሺݐሻ െ ଶሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଶሺݐሻ െ ଶሻ൯ߠ

݀ଵ

 

 
4.2. The Control Design of The Second Follower 

From the figure 2, we have 

														
ሻݐଵሺݔ െ ሻݐଷሺݔ ൌ ݀ଶsinሺ߰ଷሺݐሻ ൅ ଷሻߠ
ሻݐଵሺݕ െ ሻݐଷሺݕ ൌ ݀ଶcosሺ߰ଷሺݐሻ ൅ ଷሻߠ

																																																														ሺ14ሻ 

Using similar steps such as in 4.1., one may design the control of the second follower 

ሻݐଷሺߜ ൌ 																																																																																																																ሻݐଷሺݎ0.0562

൅
ሻݐሻsinሺ2߰ଷሺݐଷሺݑሻ൫ݐଷሺݎ2 ൅ ଷሻߠ ൅ ሻݐሻcosሺ2߰ଷሺݐଷሺݒ ൅ ଷሻ൯ߠ

݀ଶ
										

െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଵሺݎ ൅ ߰ଷሺݐሻ ൅ ଷሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଷሺݐሻ ൅ ଷሻ൯ߠ

݀ଶ

െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଷሺݎ ൅ ߰ଷሺݐሻ ൅ ଷሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଷሺݐሻ ൅ ଷሻ൯ߠ

݀ଶ

	ሺ15ሻ

 

Then, this control ሺߜଷሻ is substituted to the system (1) with ݅ ൌ 3. Thus, we obtain a system of the differential 
equations of the second follower: 

ሻݐሶଷሺݔ ൌ ሻ൯ݐଷሺtሻcos൫߰ଷሺݑ െ 																																																																				ሻሻݐଷሺtሻsinሺ߰ଷሺݒ

ሻݐሶଷሺݕ ൌ ሻ൯ݐଷሺtሻsin൫߰ଷሺݑ ൅ 																																																																				ሻሻݐଷሺtሻcosሺ߰ଷሺݒ
ሶݑ ଷሺݐሻ ൌ 0																																																																																																																																					
ሻݐሶଷሺݒ ൌ 0																																																																																																																			ሺ16ሻ										
ሶ߰ ଷሺݐሻ ൌ 																																																																																																																																ሻݐଷሺݎ

ሻݐሶଷሺݎ ൌ
ሻݐሻsinሺ2߰ଷሺݐଷሺݑሻ൫ݐଷሺݎ2 ൅ ଷሻߠ ൅ ሻݐሻcosሺ2߰ଷሺݐଷሺݒ ൅ ଷሻ൯ߠ

݀ଶ
																							

														െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଵሺݎ ൅ ߰ଷሺݐሻ ൅ ଷሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଷሺݐሻ ൅ ଷሻ൯ߠ

݀ଶ

													െ
ሻݐሻsinሺ߰ଵሺݐଵሺݑሻ൫ݐଷሺݎ ൅ ߰ଷሺݐሻ ൅ ଷሻߠ ൅ ሻݐሻcosሺ߰ଵሺݐଵሺݒ ൅ ߰ଷሺݐሻ ൅ ଷሻ൯ߠ

݀ଶ

					

 

 
5. NUMERICAL  SOMULATION 

In this section, some numerical simulations to illustrate the system (6), (13) and (16) are reported. The 
control design of the leader ship used the Pontryagin Maximum Principle for optimal control problems. To 
approach the initial value of the co-state variables used steepest gradient descent method. Furthermore, the 
control design of the follower ship used geometry approach (Miswanto, et al., 2012). First of all given a 
desired path traced by the leader ship. The Start position and end position of the desired path is ߛሺ0ሻ ൌ
ሺ0, 10ሻ dan ߛሺ20ሻ ൌ ሺ2.78, 143.14ሻ. The desired path is written as follows: 
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ሻݐ௫ሺߛ ൌ

ଵ଴

ଷ
cosሺ0.15ݐሻ ൅ ଶ଴଴

ଷ
sinሺ0.15ݐሻ െ ଵ଴

ଷ

ሻݐ௬ሺߛ ൌ
ଵ଴

ଷ
sinሺ0.15ݐሻ െ ଶ଴଴

ଷ
cosሺ0.15ݐሻ ൅ ଶଷ଴

ଷ

																												ሺ17ሻ  

The problem in this section is to design the control for three ships, so the three ship move to follow the 
desired path from the initial position (ݐ ൌ 0 seconds) to the end (ݐ ൌ 20 seconds). First of all is designed 
motion control of the leader ship for track a desired path. Design control of the leader ship used the 
Pontriagyn Maximum Principle.  Table 1 below shows start position and end position of the leader ship. The 
leader ship is expected to maneuver tracing this path as close as possible. 

 

     Table 1. Start position (ݐ ൌ 0 second) and end position  (ݐ ൌ 20 second) of the leader ship. 

x(0) 

m 

y(0) 

m 

u(0) 

݉
ݐ݁݀

 

v(0) 

݉
ݐ݁݀

 

(0) 

deg 

r(0) 

݀݁݃
ݐ݁݀

 

x(20) 

m 

y(20) 

m 

u(20) 

݉
ݐ݁݀

 

v(20) 

݉
ݐ݁݀

 

(20) 

deg 

r(20) 

݀݁݃
ݐ݁݀

 

0 10 10 0.5 90 0 2.78 143.14 10 0.5 -90 -9 

 

The desired path in equation (17) is substituted in (6) with the parameter ݇ ൌ 1. As explained above, the 
initial value of the co-state variable approximated by the method of steepest gradient descent. Fig. 3 below 
shows the trajectory of the leader ship tracing the desired path by using the method.  

From Figure 3 above shows that the trajectory of the leader ship (solidline) can track the desired 
path (circle) from the strart position ݐ ൌ 0 seconds to the end position ݐ ൌ 20 seconds with a small enough 
distance. This means that the leader ship can move from one area (the starting position) to another area (final 
position), hope of the results of numerical simulations are the first follower ship and the second follower ship 
also move to follow the  trajectory of the leader ship from the start position ሺݐ ൌ 0	secondsሻ to the end 
position ሺݐ ൌ 20	secondsሻ. Trajectory error between the trajectories of the leader ship with desired path can 
be seen in Figure 4. 

 

Figure 3. Trajectory of the leader ship and 
the desired path. 

 

Figure 4. Trajectory Error between the trajectory of the leader 
ship and desired path 
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Next, we show the numerical simulations to illustrate model (1)	in the two dimensional space. The movement 
of the two agents are described by the systems (13) and (16) and the leader is described by the system (6). 
Distance ሺ݀ଵሻ between the initial position of the first follower ship to the initial position of leader ship is 50 
m and the distance ሺ݀ଶሻ between the initial position of the second follower ship to initial position of the 
leader ship is 50 m. Orientation angle ሺߠଶሻ of the first follower ship and second follower ship ሺߠଷሻ to the 
leader ship is 36 degrees and 10 degrees. In this simulation, velocity of three ship is assumed to equal. The 
initial conditions of the three ships are given as follows. 
 
 

Tablel 2. Initial position of three ship 

 
Kapal 

x(0) 
m 

y(0) 
m 

u(0) 
݉
ݐ݁݀

 

v(0) 
݉
ݐ݁݀

 

(0) 
Deg 

r(0) 
݀݁݃
ݐ݁݀

 

Master 0 10 10 0.5 90 0 
Slave I 40 -20 10 0.5 90 0 
Slave II -40 -20 10 0.5 90 0 

Next, we show the trajectory of the model (1) for three ship. Trajectory of the three ship can be seen in 
Figure 4. 

 

 
Figure 5. Trajectory of three ship formation 

 
The results of numerical simulations in Figure 4 above shows that two follower ships can follow the 
trajectory of the leader ship moves from the initial position ሺݐ ൌ 0 seconds) to end position (ݐ ൌ 20 seconds). 
From Figure 4, it can be seen that the triangle formation of three ship are preserved with the leader positions 
on the pointing part, but the measurement of the triangle is not preserved. The measurement of the triangle 
formation is smaller. We suspect that this is caused by the attraction function that is too strong. 

 
 

6. CONCLUSION 
A From the numerical simulation results above, it can be seen that the tracking error of the path of the 

leader ship tracing a desired path is sufficiently small and the distance between the path of leader ship and the 
desired path is preserved. A geometry approach for formation control of a group of ship is investigated in this 
paper. The simulation on three ship formation demonstrates that the proposed method is effective and 
feasible. In the future works, we will discuss the movement control of model swarm consisting of several 
ships with a specific geometry formation. 
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