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 This work presents a comprehensive review of current probabilistic 
developments used to calculate position by mobile robots in indoor 
environments. In this calculation, best known as localization, it is necessary 
to develop most of the tasks delegated to the mobile robot. It is then crucial 
that the methods used for position calculations be as precise as possible, and 
accurately represent the location of the robot within a given environment. 
The research community has devoted a considerable amount of time to 
provide solutions for the localization problem. Several methodologies have 
been proposed the most common of which are based in the Bayes rule. Other 
methodologies include the Kalman filter and the Monte Carlo localization 
filter wich will be addressed in next sections. The major contribution of this 
review rests in offering a wide array of techniques that researchers can 
choose. Therefore, method-sensor combinations and their main advantages 
are displayed.
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1. INTRODUCTION  

Mobile robot have seen an increase presence in the industrial field performing tasks as varied as 
cleaning floors, loading and unloading in industrial plants, transporting samples from one laboraty to another, 
among many others. All that without ignoring the growing introduction of this type of robot as a domestic 
worker because of its flexibility, small size and low cost. Nearly all of these applications require knowledge 
of the position of the robot; therefore it is necessary to perform a localization calculation [1]. In localization, 
the position of the robot relative to a map of an environment is estimated and this calculation represents one 
of the most relevant problems in mobile robotics [2]. Furthermore, these calculations are used in other 
modules of the robot control software that are in charge of deciding how the robot should act in the next 
movement. [3] establish that the robot must navigate safely within its environment as a key prerequisite for a 
truly autonomous robot. Reliable navigation in mobile robotics requires the computation of robust motion 
approximations. Solutions based on inertial measurement units or global positioning system (GPS) can 
provide position approximations and their corresponding uncertainties [4]. However, this solution is 
impractical in indoor applications where GPS signals are not reliable. While outdoor localization in open 
areas has been largely solved with the advances in satellite-based GPS systems, indoor localization presents 
ongoing challenges due to the large range of variables that require different techniques [5]. As it is not 
possible to have a calculation using GPS, the use of other types of sensors is necessary to collect information 
from the environment. Two different sources of information may be used to map navigation: proprioceptive 
(gyroscope, inclinometer) and exteroceptive (compass). Some authors call these sensors as idiothetic and 
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allothetic sensors, respectively [6]. The robot gathers data through exteroceptive sensors which survey the 
world and proprioceptive sensors which continuously monitor the motion of the robot in space via compass 
readings, wheel encoders, and others [7]. These sensors are used to determine the orientation and inclination 
of the robot; the process to calculate the orientation also it is called attitude estimation. At the same time, the 
technique of estimating the position through the initial position, course and speed, is called dead reckoning 
[8]. In dead reckoning (heading sensors) and odometry (wheel sensors only) the position update is based on 
proprioceptive sensors. The movement of the robot is sensed with wheel encoders and/or heading sensors that 
later it is integrated to compute position. Because the sensor measurement errors also are integrated, the 
position error is accumulated over time. Thus the position has to be updated from time to time by other 
localization mechanisms; otherwise the robot is unable to maintain a meaningful position estimate in long 
runs. In short, mobile robot effectors introduce uncertainty about the next state. Thence, it is important to 
understand the precise nature of the effector noise that affects mobile robots. From the robot perspective, this 
error in motion is viewed as an error in odometry, or the inability of the robot to estimate its own position 
over time using knowledge of its kinematics and dynamics. In the field of mobile robotics, it is common that 
odometry error sources be divided into two different groups. The first source is the systematic error that is 
deterministic. Systematic error sources include unequal wheel diameters, misalignment of wheels, or 
kinematic modeling errors. Therefore, it is possible to decrease the error if kinematic parameters are 
calibrated. The second source is the nonsystematic error, which is stochastic. Possible sources of these kinds 
of errors are environmental conditions such as uneven ground or wheel slippage. Nonsystematic errors 
cannot be directly compensated, but the errors are just modeled as the stochastic uncertainty. If 
nonsystematic errors are too large, then it is difficult to use pure odometry for position estimation [9].  

The true source of error generally lies in an incomplete model of the environment, which represent a 
nonsystematic error. For instance, the robot does not model the fact that the floor may be sloped, the wheels 
may slip, or that a human may push the robot. All of these unmodeled sources of error result in inaccuracy 
between the physical motion of the robot, the intended motion of the robot, and the proprioceptive sensor 
estimates of motion [10]. Furthermore, interaction between the robot and the environment, along with the 
presence of noisy sensor readings make the problem more difficult to solve. Another type of problem occurs 
when the measurements of sensors arrive delayed to the localization module due to multiple factors such as 
the physical distribution of the sensors, the communication network, and the time used to pre-process the raw 
measurements to extract the information that is sent to the localization module. Another difficult scenario 
appears when the delays and the sequence of the arrival of information to the localization module are not 
fixed, constituting the out-of-sequence problem (OOSP). In order to deal with the measurement arrival 
delays, the localization module can basically implement four different solutions, as suggested in [11]. 

Briefly, the autonomous mobile robot starts from an initial position without prior knowledge of the 
environment and tries to gain information about its surroundings, through its onboard sensor measurements. 
The robot needs to consider all of the measurements from the sensors to create a belief of its next state. In 
this order to achieve this it is necessary employ a probabilistic method. Here, the classical Bayesian 
formulation is adopted to update a hypothesis. Hence, sensor measurements are combined to calculate the 
location of salient features of the environment (mapping process) and simultaneously the robot estimates its 
own position in this continuously enriched map (localization process). In general, the majority of works in 
the literature relies on probabilistic frameworks to solve the localization problem. The idea underpinning 
such approaches is to recursively maintain a probability distribution, called belief, over all positions (state 
space points) in the environment. Probabilistic localization algorithms are variants of the Bayes filter. The 
straightforward application of Bayes filters to the localization problem is called Markov localization. The 
Markov localization model can represent any probability density function regarding robot position. However, 
this approach is extremely general and some authors describe it as inefficient. Considering the fundamental 
demands on a robot localization system, one can argue that this filter is not the correct solution to the 
localization problem but sensor fusing is a key element to robust localization. The Kalman filter is presented 
in the next section. This method is commonly applied to satisfactorily combine sensor measurements 
followed by an analysis of other algorithms derived from the Bayes rule. In this work, frameworks with the 
same sensor type used are divided in different sections, and accordingly it is possible compare the features 
contained in similar systems. 
 
 
2. KALMAN FILTER  

To control a mobile robot, as explained above, frequently it is necessary to combine information 
from multiple sources. However, different types of sensors have different resolutions and degrees of error. 
Consequently, the information that comes from trustworthy sources should be more important or carry more 
weight than less reliable ones. A general way to compute the information from sources that are more or less 
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trustworthy and what weights must be given to the data of each source; is by making a weighed pounder 
addition of the measurements. This process is better known as Kalman filter and it is one of the methods 
more widely used for sensorial fusion in mobile robotics applications [12]. In Figure 1, a Kalman filter is 
illustrated where the blocks represent the measurements, devices, and the environment. This filter is used 
when the system to be modeled fails for having a nonlinear Gaussian noise distribution. While the errors are 
approximately Gaussian, the Kalman filter can be used nevertheless but will probably not be optimal. For 
nonlinear systems, the extended Kalman filter (EKF) is used. This involves the linearization of the plant, and 
if necessary, the linearization of the measurement. Thus, high order terms of the Taylor expansion are 
cancelled. The existing linearized error propagation in the family of Kalman filters can result in large errors 
and inconsistency in the simultaneous localization and mapping (SLAM) problem. One approach to alleviate 
this situation is the use of iteration in the EKF and the sigma point Kalman filter (SPKF) [13]. 

 
 

 
 

Figure 1. Typical Kalman filter application 
 
 
To review the work done by the scientific community, this section is divided into two different types 

of frameworks. First, works that use landmarks are displayed. The majority of these works include vision 
sensors and triangulation methods. And second, methods based on laser sensors are shown. These two 
frameworks represent the effort to improve the solution to the localization problem, and their importance is 
highlighted individually. 
 
2.1.  Landmark and triangulation methods 

As navigation strategy, methods with landmarks and triangulation of signals rely on identification of 
features or objects of the environment. The features and objects must be known a priori or extracted 
dynamically. The environment features are divided into four types: 1) active beacons that are fixed at known 
positions and actively transmit ultrasonic, IR (infrared) or RF (radio frequency) signal for the calculation of 
the absolute robot position through the direction of receiving incidence; 2) artificial landmark which are 
specially designed objects or markers placed at known locations in the environment; 3) natural landmarks 
which are distinctive environmental features and can be extracted by sensors; and 4) environment models that 
are built from prior knowledge about the environment and can be used for matching new sensor observations. 
Among the environmental features discussed, natural landmark-based navigation is flexible because no 
explicit artificial landmarks are needed, but may not work well when landmarks are sparse or the 
environment is not known a priori. Although the artificial landmarks are enhanced and map building process 
is simplified. Nowadays, the emergence of visual sensors has resulted in a trend towards the use of digital 
cameras as the main sensor to gather information. The simultaneous process of localization and mapping 
through cameras is commonly called visual SLAM and solved with EKF. The basic strength of EKF in 
solving the SLAM problem lies in its iterative approach of determining the estimation. Henceforth building 
of an augmented map of its surrounding environment where the robots navigate through some waypoints. 
[14] gradually build the map by considering it as an augmentation of estimated states, which are nothing but 
a collection of positions of the features (or landmarks) in the environment, along with the position of the 
robot. Thus, to solve the localization problem, the robot position and the locations of observed stationary 
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landmarks (for example line segments) must be estimated. The observation-update step requires that all the 
landmarks and the joint covariance matrix be updated every time an observation is made. This means that the 
extent of the computation expands quadratically with the number of landmarks in a map. Besides, vision-
based approaches present several problems with occlusions, real-time operation, and environment 
modifications. Consequently, the robot can only detect the presence of the tags when it is traveling in their 
proximity. As a result, the importance of combining this information with data obtained from other sensors 
(e.g. odometry) is observed [15] [16]. Below a laser range finder is shown. This type of sensor facilitates the 
data processing by the localization algorithm.  Besides, its recognition does not depend on changes in the 
environment. 
 
2.2.  Laser range finder 

The localization system based on the laser scanner and retro-reflective landmarks is a promising 
absolute positioning technique in terms of performance and cost. The laser actively emits a signal and records 
its echo, the output signal being a light beam. Lasers provide much more focused beams than other sensors 
like sonars. This is crucial when hitting a smooth surface at an angle. [17] use sensor fusion between an 
omnidirectional camera and a 3D laser range finder (LRF). This approach takes advantage of the metric 
information provided by the LRF and combines it with the omnidirectional vision. Then camera extracts the 
vertical lines in the environment and using a scan matching technique, solves the SLAM problem. However, 
the authors do not consider occlusions and illumination changes. 

In [18], the EKF is used to localize the mobile robot with a LRF sensor in an environment 
demarcated with line segments. Simulating the kinematic model of the robot performs a prediction step. A 
method for estimating the covariances of the line parameters based on classic least squares (LSQ) is 
proposed. This method is compared with the method resulting from the orthogonal LSQ in terms of 
computational complexity. The results of a comparison show that the use of classic LSQ instead of 
orthogonal LSQ reduces the number of computations in a localization algorithm that is a part of a SLAM. In 
the input noise covariance matrix of the EKF the standard deviation of each angular speed of robot wheels is 
calculated as being proportional to the angular speed of the robot wheels. A correction step is performed 
minimizing the difference between the matched line segments from the local and global maps [19]. If the 
overlapping rate between the most similar local and global line segments is below the threshold, the line 
segments are paired. The line covariances of parameters, which arise from the LRF distance-measurement 
error, comprise the output noise covariance matrix of the EKF. Line segments were chosen because they 
require a smaller amount of computer memory in comparison with the occupancy grids method [20]. 

Traditionally, many nonlinear Bayesian estimation problems are solved using the EKF. But when 
the dynamic models and measurements are highly nonlinear and the measurement noise is not Gaussian, 
linearized methods may not always be a good approach [21]. Popular alternatives to Gaussian techniques are 
nonparametric filters. Nonparametric filters do not rely on a fixed functional form of the posterior, such as 
Gaussians. Instead, they approximate posteriors by a finite number of values, each roughly corresponding to 
a region in state space.  
 
 
3. PARTICLE FILTER  

Particle filters (PF) are sequential Monte Carlo methods under the Bayesian estimation framework 
and have been widely used in many fields such as signal processing, target tracking, mobile robot 
localization, image processing, and various economics applications. The key idea is to represent the next 
probability density function (PDF) of the state variables by a set of random samples or particles with 
associated weights, and compute estimates based on these samples and weights. PF can estimate the system 
states sufficiently when the number of particles (estimations of the state vectors which evolve in parallel) is 
large. The PF can be applied to any state transition or measurement model, and it does not matter if some 
errors in inertial sensors exhibit complex stochastic characteristics. These errors are hard to model using a 
linear estimator such as the Kalman filter because of their high inherent nonlinearity and randomness. 
However, this method has not yet become popular in the industry because implementation details are missing 
in the available research literature, and because its computational complexity has to be handled in real-time 
applications. The first method discussed it is the triangulation by WiFi (IEEE 802.11 WLAN), which consists 
in identifying access points in the environment. One advantage in using WiFi technology is its frequent use in 
indoor environments. 
 
3.1.  WiFi 

According to WiFi-alliance, over 700 million people use WiFi and there are about 800 million new 
WiFi devices every year. This freely available wireless infrastructure prompted many researchers to develop 
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WiFi-based positioning systems for indoor environments. Three main approaches for WiFi-based positioning 
exist: time-based, angle-based, and signal-strength-based approaches.  

Often times, however, there are no available WiFi access points and it is necessary to find a new 
manner of identifying the environment. Omnidirectional cameras represent a cheap solution and many 
features of the environment can be extracted from an image. 
 
3.2.  Omnidirectional cameras and laser range finder 

 According to [22] two methodologies have been prevalent in live motion and structure estimation 
from a single moving video camera: i) filtering approaches that fuse measurements from all images 
sequentially by updating probability distributions over features and camera parameters; and ii) bundle 
adjustment (BA) methods that perform batch optimization over selected images from the live stream, such as 
sliding window, or in particular spatially distributed keyframes. In mentioned work probability distributions 
are studied, and accordingly to localizace the robot it is important have object recognition. Authors like [23] 
build a probabilistic object recognition. In proposed framework, a static recognition module that provides 
class propabilities for each pixel of a set of local RGB features. For this purpose two methods are presented: 
i) a Bayesian method based on a maximum likelihood; and ii) a neural network that by author results, it is 
demonstrate sometimes work better than the Bayesian approach when they are integrated within a tracking 
framework. [24], [25], [26] studied the feasibility of the techniques based on the global appearance of a set of 
omnidirectional images captured by a camera to solve the localization problem. First, they studied how to 
describe the visual information globally so that it correctly represents locations and the geometrical 
relationships between these locations. Then they integrated this information using an approach based on a 
spring-mass-damper model, to create a topological map of the environment. Once the map is built, they 
proposed the use of a Monte Carlo localization approach to estimate the most probable position of the vision 
system and its trajectory within the map. 

[27] present a methodology to build incremental topological maps. They used omnidirectional 
images both in robot mapping and localization. These solutions can be categorized into two main groups: 
feature-based and appearance-based solutions. In the first approach, a number of significant points or regions 
are extracted from each omnidirectional image and each point is described using an invariant descriptor. All 
the experiments have been carried out with a set of omnidirectional images captured by a catadioptric system 
mounted on the mobile platform. Each scene is first filtered to avoid lighting dependence and then is 
described through a Fourier-based signature that presents a good performance in terms of amount of memory 
and processing time. In that work, the authors have evaluated the influence of the descriptor in the 
localization by varying the number of possible associations. The system is able to estimate the position of the 
robot in the case of an unknown initial position and it is able to track the position of the robot while moving. 
In the evaluated methods, as they increase the number of particles in the system, the average of localization 
decreases rapidly. Also, it is possible to correct the weighting of the particles by combining a physical system 
of forces with a Gaussian weight. 

Approaches before the present, do not represent all the techniques used in the visual framework. 
There exist other methods with more than a camera like stereo vision. [28] solve the SLAM problem with an 
observation model that consider both the 3D positions and the SIFT descriptor of the lankmarks. One 
advantage of stereo vision is the measure of the depth and therefore the possibility of realice a probabilistic 
model for visual odometry. In the next section a compilation of parallel techniques is presented, many of 
which are focused on reducing the number of the computations. 

 
 

4. OTHER METHODS 
[29] establishes that the time and memory requirements of the basic EKF–SLAM approach result 

from the cost of maintaining the full covariance matrix, which is O(n2) where n is the number of features in 
the map. Many recent efforts have concentrated on reducing the computational complexity of SLAM in large 
environments. Several current methods address the computational complexity problem by working on a 
limited region of the map. Postponement and the compressed filter significantly reduce the computational 
cost without sacrificing precision, although they require an O(n2) step on the total number of landmarks to 
obtain the full map. The split covariance intersection method limits the computational burden but sacrifices 
precision: it obtains a conservative estimate. The sparse extended information filter is able to obtain an 
approximate map in constant time per step, except during loop closing. All cited methods work on a single 
absolute map representation, and confront divergence due to nonlinearities as uncertainty increases when 
mapping large areas. In contrast, local map joining and the constrained local submap filter, propose to build 
stochastic maps relative to a local reference, guaranteed to be statistically independent. By limiting the size of 
the local map, this operation is the constant time per step. Local maps are joined periodically into a global 
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absolute map, in a O(n2) step. Given that most of the updates are carried out on a local map, these techniques 
also reduce the harmful effects of linearization. To avoid the O(n2) step, the constrained relative submap 
filter proposes to maintain the independent local map structure. Each map contains links to other neighboring 
maps, forming a tree structure (where loops cannot be represented). In the Atlas framework [30], network 
coupled feature maps, and constant time SLAM the links between local maps form an adjacency graph. 
These techniques do not impose loop consistency in the graph thus sacrificing the optimality of the resulting 
global map. Hierarchical SLAM proposes a linear time technique to impose loop consistency, obtaining a 
close to optimal global map. The FastSLAM technique uses particle filters to estimate the vehicle trajectory 
and each one has an associated set of independent EKF to estimate the location of each feature in the map. 
This partition of SLAM into a localization and a mapping problem, allows to obtain a computational 
complexity O(log(n)) with the number of features in the map. However, its complexity is linear with the 
number of particles used. The scaling of the number of particles needed with the size and complexity of the 
environment remains unclear. In particular, closing loops causes dramatic particle extinctions that map 
results in optimistic (i.e., inconsistent) uncertainty estimations. 

In [31], researchers investigate the potential to improve the nonquantized (NQ) method, by 
exploiting the entropy-discriminativity relation. In this work they investigate the nonquantized representation 
as a solution to the global localization problem. In particular they focus on performance gains this 
representation offers over the BoW (Bag of Words) model and of the potential to improve efficiency and 
memory size at a reduced accuracy loss. As a first contribution, this paper presents a comparative evaluation 
of quantized (Q) and nonquantized representations in a robot localization task. As a second contribution, they 
propose modulating the importance of features according to the entropy measure, which is experimentally 
shown to benefit localization accuracy. As a third contribution, it proposes two approaches to speed up the 
NQ method at run time. In the first approach, they propose a hierarchical localization scheme performed at 
two stages is proposed. In the second approach, objective was to capitalize on the specificities of the training 
data for localization. Experimental results obtained with this method support its superiority in the global 
localization task and suggest that performance gains can be achieved in the loop closure problem.  

Vallet [32] present a mobile robot used to simultaneously locate the nodes of a wireless network and 
calibrate the parameters of received signal strength. They assume that the position of all the nodes is 
unknown and use a mobile robot, capable of SLAM, as a mobile beacon. While the robot moves around, it 
builds a map of the environment using a laser scanner and odometry information. Thus, its position within 
the map is known at any moment. As the robot moves, it also collects RSS (received signal strength) 
measurements from the nodes of the network. All this information is then exploited to estimate the position 
of the nodes. The efficacy of the models can be compared using the likelihood of the data. However, the 
authors also consider that a more meaningful comparitive measure in the context of this research is to use the 
real error of maximum likelihood (ML) position estimates. One advantage of the ML formulation of the 
localization problem is that it does not require calculating the inverse model of the RSS-distance, which can 
be difficult. In particular, if the RSS-distance mapping is not bijective, the inverse model (distance-RSS) 
might contain several distances for the same RSS values. This can be a serious drawback for some algorithms 
that require a direct estimate of the distance from RSS, and requires additional work to choose between the 
possible alternatives. The ML formulation of the problem simply does not suffer from this problem, and it 
can work with any function of the distance, as long as the model is a valid PDF. To learn more about WiFi 
signal strength sensors, read [33], [34], [35], [36]. 

 
 
5. DISCUSSION 

There are studies which compares the effectiveness of EKF and PF such as [37], where the EKF has 
been employed for the localization of an autonomous vehicle by fusing data coming from different sensors. 
In the EKF approach the state vector is approximated by a Gaussian random variable, which is then 
propagated analytically through the first order linearization of the nonlinear system. The series approximation 
in the EKF algorithm can, however, lead to poor representations of the nonlinear functions and of the 
associated probability distributions. As a result, sometimes the filter will be divergent. Related work has 
shown that the particle filter is superior than the EKF in terms of the accuracy of the state vector estimation, 
as well as in terms of robustness and tolerance to measurement noise. The performance of the particle filter 
algorithm depends on the number of particles and their initialization. It can be seen that the PF algorithms 
generate better estimates of the state vector of the mobile robot as the number of particles increases, but at the 
expense of higher computational effort. 

The optimal filter for a linear model with Gaussian noise is the Kalman filter. State estimation for 
nonlinear systems with non-Gaussian noise is a difficult problem and in general the optimal solution cannot 
be expressed in closed-form. In order to increase the accuracy of visual SLAM it is usually more profitable to 
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increase the number of features than the number of frames. This is the key reason why BA is more efficient 
than filtering for visual SLAM. On the other hand, the PF suffers from the so-called sample impoverishment 
problem in which samples tend to converge to a confined region in the solution space, making state 
estimations trapped in local optima. In [38], samples of particles are updated and propagated by 
implementing a sequential importance sampling (SIS) process recursively as new measurement information 
becomes available. As the number of samples becomes very large and approaches infinity, the SIS particle 
filter approximates the optimal Bayesian estimate. 
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