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 Sensor based perception of the environment is an emerging area of the 
mobile robot research where sensors play a pivotal role. For autonomous 
mobile robots, the fundamental requirement is the convergent of the range 
information in to high level internal representation. Internal representation in 
the form of occupancy grid is commonly used in autonomous mobile robots 
due to its various advantages. There are several sensors such as vision sensor, 
laser rage finder, and ultrasonic and infrared sensors etc. play roles in 
mapping. However the sensor information failure, sensor inaccuracies, noise, 
and slow response are the major causes of an error in the mapping. To 
improve the reliability of the mobile robot mapping multisensory data fusion 
is considered as an optimal solution. This paper presents a novel architecture 
of sensor fusion frame work in which a dedicated filter (DF) is proposed to 
increase the robustness of the occupancy grid for indoor environment. The 
technique has been experimentally verified for different indoor test 
environments. The proposed configuration shows improvement in the 
occupancy grid with the implementation of dedicated filters.  
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1. INTRODUCTION  

Map formation in the form of occupancy grid has proven to be the powerful and efficient unifying 
solution for navigation and path planning in mobile robots. During navigation, the mobile robot receives 
complex data from different sensors and needs efficient processing to yield an optimal and consistent 
perception of the environment [1, 26, 34, 36, and 37]. Mobile robot navigation is a combination of two 
fundamental components i.e. localization and mapping [3, 7, 10, 13, 20, and 35]. In literature it is considered 
as a complex problem, because for acquiring a map the robot needs good estimation of its localization and for 
localization the robot needs a consistent map [8]. Many researchers suggested techniques to represent the 
mobile robot mapping such as i.e. metric, topological and hybrid mapping approach [5, 6, 10, 12, 30, and 31]. 
Recently, hybrid methods of mapping and mobile cooperative network methods are explored for autonomous 
applications [24]. These approaches present complementary strengths and weaknesses [6, 8, and 32]. The 
occupancy grid is the metric approach considered as an efficient solution for mobile robot mapping in static 
environment and there has been most recent research applied to the dynamic situation also [37]. It represents 
a map of the environment as an evenly spaced field in the form of probability ranging from 0 to 1. The 
accuracy of the grid mapping depends upon the clear detection of the boundaries of the obstacles in the 
environment hence the overall performance of the grid depends upon how accurately the generated grid is 
matching with real map of the environment.    
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An accurate perception of the map in the form of occupancy grid enables the robot to complete 
complex tasks, accurately and reliably which depends upon the several factors such as kinematics and 
dynamic constraints of the mobile robot, sensing abilities, processing and control capabilities and more 
precisely it depends upon the complexity of the environment [1, 3]. The range sensing accuracy is considered 
inherently difficult, as the small sensory noise introduced in the estimate of range may lead to the large 
distortion in the resultant map [5]. The noise reduction in the resultant grid is classified in to two basic 
processes of mapping i.e. pre-processing and post-processing of the information. This paper specifically 
focused upon the post-processing of the grid map.  

The proposed technique is based upon analytical and mathematical analysis, in which the dedicated 
filters are implemented to the grid. Previously, for mapping with heterogeneous sensors, simple thresholding 
methods were used to eliminate local occlusions of occupancy grid [29]. In such situations a common 
thresholding for different sensors, causes decrease in the performance of the resultant grid. In the proposed 
method recursive Bayesian approach is used to update the map. The updated map is further filtered by using 
DF where, the optimal statistical values of the filter have been selected after quantitative and qualitative 
analysis of conventional mapping system. We compare the proposed technique with conventional method 
by using qualitative and quantitative analysis. The proposed technique is experimentally tested and validate 
for indoor office environment with a mobile robot equipped with sonar sensors and laser range finder. The 
robot is allowed move on a smooth surface in the environment consisting of various obstacles.  
 
 
2. ROBUST OCCUPANCY GRID MAPPING AND RELATED WORK   

Mobile robot mapping addresses the problem of acquiring physical environmental information 
around the robot with the help of sensors, where the sensor model converts the acquired information into an 
internal representation in the memory of the computer so that the controller may control the mobility of the 
robot accordingly. In practice the mobile robot has to deal with complex environmental problems, where the 
obstacles may be stationary or moving and the material properties of the obstacle may be highly absorbent or 
reflective (for acoustic and optical sensors). In past these factors have been handled carefully and put into 
practice to improve the accuracy of mapping by multisensory data fusion.  

 Multisensor data fusion is successfully implemented in mobile robots to improve the mapping. 
Literature shows several techniques such as weighted average method [21], Kalman filter [18], extended 
Kalman [19],  Dempster–Shafer (DS) theory etc. is used.   The performance value of occupancy grid is also 
improved by using logical sensors where online fusion algorithm and selection of most reliable sensor is 
taken up by with special rules of combination of fuzzy values [28]. Artificial Neural Networks used to map 
the environment in occupancy gird has been proven to be the robust and adaptive to environmental changes 
[11, 16, 17, 22, 23, and 25]. Post processing of the grid play crucial role to improve the occupancy grid 
mapping. Stepan et al. improved the robustness of occupancy grid by using (a)   fusion of sensors with one 
occupancy grid (b) Fusion of sensor with two-occupancy grids (c) fusion of sensors with different precisions 
[29]. Stepan et al, elaborated to improve the robustness of grid by post processing using thresholding method 
and by combining an occupied cell from an accurate sensor such as vision sensor with a small neighborhood 
of corresponding cell from an inaccurate sensor such as sonar sensor.  Stapen et al. (2005), in his research 
used a single threshold algorithm for different sensors that may reduce the performance of resultant grid in 
few cases [29]. In another post processing technique Jose-Luis Blanco et al. (2007) proposed to increase the 
robustness of the occupancy grid based on the extraction of feature descriptors by means of a polar 
coordinate transformation, around highly distinctive points. It presented a modest computation complexity 
and resulted robustness of grid even in the dynamic environment [15]. Author implemented an additional 
RANSAC-based method for estimating the map transformation using (SIFT) scale invariance feature 
transformation technique [2]. Most recent work of post processing of grid by using thesholding is presented 
by Boris Lau et al. (2012), [4].   

 
 

3. EXPERIMENTAL SETUP  
Mapping experiment conducted in the robotics laboratory by using four-wheeled mobile robot fitted 

with forward-looking sonar and laser range finder as shown in Figure 1.   
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Figure 1. Mobile robot fitted with LRF and Sonar sensors 
 
 
The #1 environmental set up is showing various obstacles, robot, and window given in Figure 2. The robot 
consists of a ring of seven sonar sensors (LV-Max Sonar–EZ1) and a Laser range finder (Hokuyo UBG-
04LX-F01), the detail is given in the assumptions. Laser range finder is interfaced to the host computer using 
USB cable set with maximum transfer rate of 9 Mbps. 
 
 

 
 

Figure 2. The #1 environment setup showing mobile robot, obstacles and window 
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 The sensory information from sonar and laser is transferred to the individual sensor model as per 
Figure 3   A programmable electronic circuit triggers the sonars asynchronously in anticlockwise direction 
where the time lag between two successive sonar trigger is set accordingly [14], 1993]. Sonar analog output 
voltage signal is transferred to data acquisition system through multi-core standard cable. The data is 
processed on windows 7 professional (64-bit), processor: Intel core i5, 2.53 GHz, core 2, threads 4 with 
simulation code is given in [9]. Microsoft office spreadsheet used to store the sensory information at different 
locations of the computer memory.  

 

 
Figure 3 Sensory information flow schematic and sensor fusion frame work with DF 

 
 
3.1 Sonar information flow  
 

The sensory observations for sonar sensors ௝ܵ		, … , ܵ௞	, ሺ݁ݎ݄݁ݓ	݆ ൌ 1, 2,… , ݇	ሻ	 and  k is the 
maximum number of sensors fitted in a ring. At any time step	ݐ, for mobile robot position coordinates	ሺݔ,  ሻݕ

is defined as	ݕ௝
௧೔	ሺೣ	,೤ሻ , ݅	݁ݎ݄݁ݓ ൌ 1, 2, … , ݊. The next observation of sensor	 ௝ܵ		at time ሺݐ ൅ 1ሻ  for ሺݔ,  ሻ isݕ

defined as		ݕ௝
௧೔శభሺ௫,௬ሻ. The information flow for next observation is shown in Figure 3. The joint information 

from set of seven independent sonar sensors is used to construct local grid map (LGM) of dimensions  
ܽ௜ ൈ ܾ௜ . 
 
3.2 Laser information flow 
 

The current observation of the laser scanner for group 	ܿ௜		at any time step	ݐ, for mobile robot 

position coordinates ሺݔ, ௖೔ܮ	ሻ defined asݕ
௧೔	ሺೣ	,೤ሻ, ݅	݁ݎ݄݁ݓ ൌ 1, 2, … , ݊. The next observation of 	ܿ௜ାଵ  group at 

time ሺݐ ൅ 1ሻ  at ሺݔ, ௖೔శభܮ			ሻ is express asݕ
௧೔శభሺೣ,೤ሻ. The flow of the information for succeeding observation is 

given in Figure 3. The joint information from different laser group is used to construct local grid map (LGM).  
  
Conclusion Remarks:  Hokuyo UBG-04LX-F01 Laser range finder used for study has a range of 20 to 5,600 
mm for 240o, with scan time 28 m sec/scan, and angular resolution of 0.36° (360°/1,024 steps). 
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3.3 Sonar and Laser Model for mapping  
 

Murphy (2004) describes a sensor model as a concept of physical sensing process in which the 
sensor is extracting relevant data from the environment [33]. The basic model of sonar beam has a field of 
view specified by ߚ , the half angle representing the width of the cone, and R is the maximum range it can 
detect. For grid element from where the range returns the probability of occupancy and probability of 
emptiness is computed as:   
 
ܲሺܱܿܿݕܿ݊ܽ݌ݑሻ ൌ ሾሼሺܴ െ ሻ/ܴሽݎ ൅ ሼሺߚ െ 	ሽሿ/2ߚ/ሻߙ ൈ	݉ܽݔ.௢௖௖௨௣௜௘ௗ                                                 (2)       
ܲ	ሺݕݐ݌݉ܧሻ ൌ 1.0 െ ܲሺܱܿܿ. ሻ                                                  (3)   
 
where r and α are the distance and angle to the grid element respectively. The term in eq. (2) captures the 
idea that the closer the grid element to the acoustic axis, the higher is the belief. Likewise, the nearer the grid 
element is to the sonar beam, the higher the belief (the ሼሺܴ െ  ௢௖௖௨௣௜௘ௗ term expresses.ݔܽ݉ ሻ/ܴሽ  term). Theݎ
the assumption that a reading of occupied is never fully believable. The term ݉ܽݔ.௢௖௖௨௣௜௘ௗ ൌ 0.98  means 
that, a grid element can never have a probability of being occupied greater than 0.98. The occupancy of 
individual cell for the grid element in region between the target object and sensor is calculated using the 
following: 
 
ܲ	ሺܱܿܿ݀݁݅݌ݑሻ ൌ 1.0 െ ܲሺݕݐ݌݉ܧሻ                                                                (4)  
ܲሺݕݐ݌݉ܧሻ ൌ 	 ሾሼሺܴ െ ሻ/ܴሽݎ ൅ ሼሺߚ െ   ሽሿ/2                                                 (5)ߚ/ሻߙ
 

Successful simulation code for grid evaluation is explained in [9] and similar relation is used to 
model laser sensor, where the elements of optic axis are consider for grid evaluation.  Bayesian is a statically 
inference method in which observations are used to update or infer the probability that a hypothesis may be 
true [4, 33]. The attraction of the Bayesian inference approach is to map building stems from the fact that the 
Bayes updating rule is recursive [27].  
 
  (Bayes’ Rule) If the event ܤଵ, ,ଶܤ …… .  ௄ constitute a partition of the sample space M, whereܤ
p	൫ܤ௃	 ് 0	൯,			for			ܬ ൌ 1, 2, 3, … ,   ,then for any even A in M such that P(A) ≠0  .ܭ
 

ܲሺܤ௜|ܣሻ ൌ
௉ሺ஻೔∩஺ሻ

∑ ௉ሺ஻ೕ∩஺ሻ
ೖ
ೕసభ

ൌ
௉ሺ஻೔ሻ௉ሺ஺|஻೔ሻ

∑ ௉൫஻ೕ൯௉൫஺ห஻ೕ൯
ೖ
ೕసభ

	for i=1,2,...,k                                           (6)            

                                                                                      
 Bi is one of i mutually exclusive (disjoint) event to be estimated. 
 A is the evidence event. 
 Unconditional probability, P(Bi) is the prior probability of the event Bi. (called Prior Probabilities). 
 The conditional probability ܲሺܤ௜|ܣሻ	is the probability of Bi given A. It is also called the posterior 

probability because it is derived from or dependent upon the specified value of A 
 

ܲሺܤ௜|ܣሻ ൌ
௉ሺ஺஻೔ሻ

௉ሺ஺ሻ
ൌ

௉ሺ஺|஻೔ሻ௉ሺ஻೔ሻ

௉ሺ஺ሻ
    (Multiplication rule)                                                          (7) 

  
Where denominator  ܲሺܣሻ		 is average conditional probability 

 ܲሺܤ|ܣ௜ሻ is the conditional probability of A given Bi 
 ∑ ܲሺܤ௝ ∩ ሻܣ

௞
௝ୀଵ =∑ ܲ൫ܤ௝൯ܲ൫ܣหܤ௝൯

௞
௝ୀଵ  is the total probability of A, and acts as a normalizing factor 

[4]. 
 

Due to the recursive characteristics of bayes rule it is used in mobile robots application for building 
a map. Bayes’ rule is applied to update the occupancy grid for multiple sensor readings (s1,… …,sn). The (6) 
transformed to (8) and (9) to the occupancy grid framework for multiple sensor readings. 
 

௜ܲ,௝
௢ৗୱ ൌ ௜ܲ,௝

௦ৗ௢
௜ܲ,௝
௢ /ൣ ௜ܲ,௝

௦ৗ௢
௜ܲ,௝
௢ ൅ ൫1 െ ௜ܲ,௝

௦ৗ௢൯൫1 െ ௜ܲ,௝
௢ ൯൧                                                 (8) 

௜ܲ,௝
௘ৗ௦ ൌ ௜ܲ,௝

௦ৗ௘
௜ܲ,௝
௘ /ൣ ௜ܲ,௝

௦ৗ௘
௜ܲ,௝
௘ ൅ ൫1 െ ௜ܲ,௝

௦ৗ௘൯൫1 െ ௜ܲ,௝
௘ ൯൧                                                                    (9) 
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The following statements are defined 
 In eq. (6) the relevant evidence ܣ is given by sensor reading s as per eq. (8) 
 The relevant evidence of true parameter  ܤ௜ is given by  ௜ܲ,௝

௢  and ௜ܲ,௝
௘  , meaning that they are the prior 

probabilities of the cell ܥ௜,௝	being occupied or empty they are taken from the existing map. 
 The conditional probability ܲሺܤ│݅ܣ௜ሻ is given by ௜ܲ,௝

௦ৗ௢ and ௜ܲ,௝
௦ৗ௘ , which are the conditional probabilities 

that a sensor reading will exit given the state of the cell ܥ௜,௝	, being occupied or empty. This conditional 
probability is given by the probabilistic sensor model. 

 The conditional probability ܲሺܤ௜|ܣሻ is given by ௜ܲ,௝
௢ৗ௦ and ௜ܲ,௝

௘ৗ௦ , which is the conditional probability that a 
cell is occupied based on the past sensor readings it is the new estimate. 

 
 
5. MAP FORMATION 

With reference to #1 environment the sonar sensor information from sensor  ଵܵ		, … , ܵ଻	,		at time step 

,ݔሺ	at position coordinates , ݐ ଵݕ ሻ is represented asݕ
௧భ	ሺళమ	,లయሻ ,	 for sonar sensor ଵܵ		, and ݕଶ

௧భ	ሺళమ	,లయሻ 	 for sonar 
sensor ܵଶ		  and succeeding sensors information from starting point position coordinates (72, 63) is stored to 
the primary data acquisition space and then transferred to sonar sensor model. The sensor model represents 
the range into occupancy grid from origin (72, 63) and stores the grid map information in auxiliary memory 
space of the processor. The Sonar LGM and Laser LGM are updated by using recursive bayes ‘(8)’ and ‘(9)’. 
After series of the observations the complete map of #1 environment is given in Figure 4. The map in Figure 
4 is showing the uncertainty and distortion in the boundaries of the grid map. The Stapen approach eq. (1) is 
applied to Sonar LGM and Laser LGM before final updating. The experiment is further conducted for #2, #3, 
and #4 environments. 

 
 

 
 

Figure 4. complete map of #1 environment 
 
 
6. QUALITATIVE AND QUANTITATIVE ANALYSIS OF CONVENTIONAL APPROACH 

Figure 4 shows occupancy grid but still there is need to improve further as the boundaries are 
distorted. The occupancy grid generated by sonar and laser sensor is individually examined. The qualitative 
analysis is made by comparing the blue print of reference map with generated map. In quantitative analysis 
random block samples of occupancy gird are selected form different locations of #1, #2, #3, and #4 

environments. The mean probability 
∑ ௫೔
೙
೔సభ

௡
			 and standard deviation 

ඥ∑ሺ௫ି௫	ሻమ

ሺ௡ିଵሻ
  of sample is evaluated as given 

in Table 1. The following observations have been identified, as Table 1. 
 
 

6.1 Analysis for sonar grid map 



                ISSN: 2089-4856 

IJRA  Vol. 4, No. 1,  March 2015 :  82 – 92 

88

The qualitative analysis shows that at certain places the boundaries of the map are not matching in 
respect to the reference map. The quantitative analysis shows that the main cause of distortion is due to the 
wide angle of sonar, where the average occupancy near the edges of the cone is 0.5-0.66; however the 
occupancy of the cell at the acoustic axis of sonar is ranging from 0.78 to 0.98, the maximum and minimum 
value of data is shown in Table 1. The average occupancy of cell within the empty area varies from 0-0.26  

 
 

Table 1. Statistical analysis of occupancy grid 

 
Stepan Approach 
 

Proposed approach using DF 
 

Environment 
Sample 
(position) 

Total cells 
Mean 
Probability

Standard 
Deviation

Mean 
Probability 

Standard 
Deviation

#1 

P1 136 .65 .214 .78 .168 
P2 140 .08 .06 .02 .044 
P3 88 .57 .167 .52 .114 
P4 110 .68 1.45 .75 .182 

#2 
G1 126 .72 .184 .71 .142 
G2 80 .62 .133 .69 .174 
G4 132 .57 .241 .52 .196 

#3 
H1 64 .02 .07 .02 .04 
H2 142 .67 .197 .76 .146 
H3 152 .62 1.27 .68 1.34 

 
 
6.2 Analysis for Laser grid map 

The map of the laser grid map is not much thicker as sonar grid due to the selection of low angular 
resolution1. The average occupancy of empty area in laser mapping is varying from 0-0.25.  
1 the high angular resolution not considered because it is difficult to handle the huge laser data for mapping. 
For fusion laser information with sonar information it is necessary to maintain the sensor registry, with the 
large laser data it is difficult to make ridged compatibility of sensors hence for this experiment  limited 
number of laser beams are selected in one group.   
 
Conclusion Remarks: it is observed that the probability distribution by sonar is different from laser sensor, 
hence there in a need of special filter for individual maps. It is proposed that the distortion in map may be 
reduced by implementation of dedicated filter, whose optimal values are selected in respect to the 
observations of table 1.  

 
 

7. SENSOR FUSION FRAME WORK WITH DEDICATED FILTERS  
To increase in the robustness of map ‘(10)’ and ‘(11)’ is proposed, where the optimal values are 

selected after qualitative and quantitative analysis is explained in section III. For sonar filter the evaluation 
criterion for single cell ܥ௜,௝	 is given as follows: 
 
௜,௝ is a single cell in one of the source grid to be evaluated and P୧,୨ܥ 

୭౩ the probability of single cell being 
occupied based on sonar sensor readings, the probability of individual cell is enhanced as: 
 

   ௜ܲ,௝
௢ೞ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ 	ݎ݋݂																										01 ௜ܲ,௝

௢ೞ ൐ .76						

52.	ݎ݋݂																		0.8 ൐ ௜ܲ,௝
௢ೞ ൏ 0.76	

		
0.45		ݎ݋݂																	0.5 ൐ ௜ܲ,௝

௢ೞ ൏ .54		

0	ݎ݋݂																						0 ൐ 	 ௜ܲ,௝
௢ೞ ൏ .26

௜ܲ,௝
௢ೞ																																					݁ݏ݅ݓݎ݄݁ݐ݋	

               (10) 

 
 The occupancy of the laser grid is enhanced by implementation of eq. (11) where P୧,୨

୭ై	the probability 
of single cell being occupied is based on Laser sensor readings, so that 
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௜ܲ,௝
௢ಽ ൌ ൞

	ݎ݋݂																													1 ௜ܲ,௝
௢ಽ ൐ .81	

0	ݎ݋݂																								0		 ൐ 	 ௜ܲ,௝
௢ಽ ൏ .26

௜ܲ,௝
௢ಽ																																	݁ݏ݅ݓݎ݄݁ݐ݋	

                            (11) 

 
The filters are implemented to different environment as the results shown in Figure 5 it represents the 
reference grid map along with results of DF for #1 environment.  
 
 

 
 
                                  (a)              (b) 
 

 
       (c )      (d) 
 
Figure 5 Mapping of #1 environment with different methods :  (a) reference grid map for #1 environment (b) 
map of #1 environment with conventional approach  (c) #1  map after implementation of dedicated filter (d) 

3-D representation of #1 environment 
 
 
8. COMPARISON OF METHOD AND PERFORMANCE ANALYSIS 

The results of mapping with different fusion strategies are compared with newly developed DF 
approach. The following comparisons are made:  
 
Qualitative comparison:  Data of the fused grid map is combined with the blue print of the reference map for 
different environment. The following observations are made:  
a.) Sonar based resultant grid map is qualitatively compared with the reference grid. It is observed that due 

to the wide beam of sonar sensor the depth of the object is not identified by using sonar sensors. The 
stapen approach using (1) is applied to the occupancy grid generated by the fusion of sonar and laser as 
per layer structure the map is improved but still imperfections are persisting in an occupied area near the 
boundaries Figure 5 (b).  

b.) The full comparison is made with the implementation of DF the quality of the map in Figure 5 ( c) , 
show that with the boundaries of the resultant map are very near to the reference map where 3-D map is 
showing the strong evidence of wall and other obstacles in the environment.   
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9.  CONCLUSIONS 
 Novel architecture of sensor fusion framework with dedicated filter is proposed to increase the 
robustness of the occupancy grid for indoor environment. The systematic information flow within the system 
represents the easy data handling technique for sensor fusion in mobile robots. The updated results using 
proposed filter shows the improvement in occupancy grid.  
 Critical investigation of conventional grid shows that the numerical data of sonar based occupancy 
grid is different from laser grid due to their different modalities and sensor inaccuracies. Several indoor 
experiments confirmed that the proposed approach is a good solution to improve the quality of the map. It is 
also noticed that with the implementation of DF, unwanted grid evidence generated due to the diffused sonar 
information and angular uncertainty is also reduced. Marginal uncertainty on the boundaries are observed i.e. 
due to wide beam of the sonar where the fused results shows the double boundaries can be consider as the 
future work. The similar model with can be experimented for outdoor environment and for other sensors such 
as Radar and IR.  
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