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ABSTRACT

In this paper, a singularity-free control methodology for the safe robot-human interaction is
proposed using a hybrid control technique in robotic rehabilitation applications. With the
use of max-plus algebra, a hybrid controller is designed to guarantee feasible robot motion
in the vicinity of the kinematic singularities or going through and staying at the singular
configuration. The approach taken in this paper is based on model-free impedance control
and hence does not require any information about the model except the upper bounds on
the system matrix. The stability of the approach is investigated using multiple Lyapunov
function theory. The proposed control algorithm is applied to PUMA 560 robot arm, a six-
axis industrial robot. The results demonstrate the validity of the proposed control scheme.
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1. INTRODUCTION
Robot assisted rehabilitation is becoming very popular among people who have suffered from a stroke due

to proprioceptive neuromuscular facilitation procedure. In many cases, stroke causes an injury to the nervous system
that causes disability in a person. In cases like this, the robot is not only a good substitute of a therapist for performing
suitable exercises on the injured person but also it can perform repetitive and case-oriented exercises that are hard
for the therapist to carryout. Repetitive and task-oriented exercises can improve muscular strength and movement
coordination in patients with impairments due to neurological or orthopedic problems. A typical repetitive movement
is the human gait. Treadmill training has been shown to improve gait and lower limb motor function in patients with
locomotor disorders [1]. Manually assisted treadmill training was first used as a regular therapy for patients with
spinal cord injury (SCI) or stroke around 15 years ago. Many clinical studies prove the effectiveness of the training,
particularly in SCI and stroke patients [2].

Manual exercises have numerous limitations. The training is labor-intensive and therefore, training duration
is usually limited by fatigue and therapist shortage [3]. Subsequently, the training sessions are shorter than what
is required to achieve an optimal therapeutic outcome. Finally, manually-assisted exercises lack repeatability and
measurement indexe of patient performance and progress.

In contrast to manually-assisted exercises, using robot assisted exercises, the duration and number of training
sessions can be increased and the number of therapists required per patient can be reduced. Furthermore, the robot
provides quantitative measure indexes and hence it allows the observation and judgment of the rehabilitation process.

Various robot assisted rehabilitation systems have been developed to support therapy of the upper extremities.
Arm trainer from Hesse et al. [4], the arm robot from Cozens [5], the haptic display of the European project GENTLE/s
[6] which is based on the FCS Haptic Master [7], the MIT-Manus [8] and [9], and the MIME (Mirror Image Movement
Enhancer) arm therapy robot [10] are examples of such systems. ARMin is another rehabilitation robot system that is
currently being developed for upper extremity treatments [2]. Since the patients limb is in direct contact with the robots
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end-effector while training, the excessive interaction force may beat the ill limb. As a result, the robots end effector
and interaction between the patients limb must be deliberately reckoned [11]. Recently, various force and position
control schemes have been designed for robotic interaction tasks. Gorce and Guihard [12] have proposed a multi-link,
position based impedance controller for implementation on a legged robot. Heinrichs et al. [13] have proposed a
position based impedance controller for an existing hydraulic industrial robot, confirming their work experimentally.
They used an actuator model to predict the torque produced from the pneumatic cylinders and the performance of
the controller was demonstrated through simulation. Seul June [14] has used a double-loop system to improve the
adaptability with the position feedback in the inner loop and to improve controller capability by tracking the desired
impedance using the outer loop.

Impedance controllers are very applicable in the field of robotics and human-system interaction. They were
first introduced by N. Hogan in 1985 [15]. The basic idea of the impedance control strategy applied to robot-aided
treadmill training is to allow a variable deviation from a given leg trajectory rather than imposing a rigid gait pattern.
The deviation depends on the patients effort and behavior.

In this paper a new approach for safe interaction of robot-assisted rehabilitation based on model-free impedance
control is proposed. The impedance controller allows the robot to achieve a certain security and compliance. Also,
a singularity-free approach methodology is combined with such a controller to solve the problem of boundary and
interior singularity for safer interaction. The rest of the paper is organized as follows. In the next section, Max-Plus
algebra which is used to implement the hybrid controller is briefly discussed. The controller design is discussed in
Section III and the stability of the controller is investigated in Section IV. Finally, concluding remarks and future works
are presented in Section V.

2. MAX-PLUS ALGEBRA
Max-Plus algebra is widely used to model behavior of systems that are discrete by nature, namely Discrete

Event Systems (DEDS). The use of Max-Plus algebra structure gives these problems the characteristic of a linear
algebra framework in which one can talk about notions like independence, eigenvalues, eigenvectors, and so on [16].
<max is defined as <max = < ∪ {−∞}; ⊕ denotes the Max operation and ⊗ denotes the Plus operation.

Here the operations ⊕ and ⊗ are defined as [17]:

a⊕ b = max(a, b)

and
a⊗ b = a+ b.

Moreover, the expression ab in Max-Plus algebra corresponds to a.b (Inner Product) in classical algebra. In
this article, Max-Plus algebra is used to switch between two robot controllers in the system and is discussed in more
detail in section IV.

3. CONTROLLER DESIGN
In this section the overall architecture of the controller is discussed. The controller consists of two major

parts. The first part is inner loop controller. This part handles the common problem of the singularity in the robotic
system and guarantees the singularity free motion control. The second part is the impedance control which deals with
the exact tracking of both force and position tracking together.

3.1. Inner Loop Controller

Dynamical model of a robot arm with n joints is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = u− τd (1)

where M(q) is the n×n positive definite manipulator inertia matrix, u is the n×1 vector of applied torques, C(q, q̇)q̇
is the n× 1 centripetal and Coriolis terms, g(q) is the n× 1 vector of gravity term and, finally, q = {q1, q2, ..., qn}T is
the n× 1 vector of joint displacements. Both joint space or task space can be used for controlling the robots. In joint
space, a robot task is specified in an n-dimensional joint space denoted by q. Joint level controller can be formulated
as

uj = M(q)(q̈d +KV qeq2 +KPq
eq1) + (q, q̇)q̇ + g (2)
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where eq = [eq1, eq2]T = [q̈d, q̇d]
T , KV q and KPq are feedback gain matrices . Therefore, equation of error in joint

space is as follows
ėq1 = eq2
ėq2 = −KPqeq1 −KV qeq2

(3)

It is easy to prove that system given by (3) is locally asymptotically stable for suitable gain matrices KPq , KV q . So,
system (3) can track any trajectories given as qd, q̇d, q̈d, regardless of the current robot configuration. Therefore, the
joint level controller (2) is valid on the entire workspace.

Although the above fact is true on the entire workspace, it is desired to design the robot controllers in the
task space because a robot task is generally represented by the desired end-effector position and its orientation. So,
to design a task level controller, the robot model needs to be represented in terms of task level variables. Hence, the
joint and task space acceleration can be utilized and related as ẍ = J̇ q̇+ Jq̈. Thus, the dynamics of the robot in terms
of extended task space variables can be formulated as MJ−1(ẍ − J̇ q̇) + C(q, q̇)q̇ + g(q) = u, where the Jacobian
matrix is in square form (n × n). The robot controller in task space can be described regarding to the desired path in
task space, xd, as follows

ud = MJ−1(ẍd − J̇ q̇ +KV xex2 +KPxex1) + Cq̇ + g (4)

where ex = [ex1, ex2]T = [xd − x, ẋd − ẋ]. The error dynamics in task space can be described as

ėx1
= ex2

ėx2 = −KPxex1 −KV xex2

(5)

It is also straightforward to prove that system (5) is locally asymptotically stable for suitable gain matricesKPx, KV x.

3.2. Outer Loop Controller (Impedance Controller)

For a safe human-robot interaction, the following passive impedance model is imposed to the robot arm [18]:

Md(q̈ − q̈d) + Cd(q̇ − q̇d) +Gd(q − qd) = −τd (6)

where Md, Cd, Gd are the desired inertia, damping, and stiffness matrices respectively and qd is the rest position of
the robot manipulator.

The aim of the outer loop controller is to make the robot arm (1) dynamics track the impedance model given
by (6). The detail of the controller design is given in [19] and only a brief description of the design is presented here.

The following error signal is first defined between the virtual system and the real system with the specified
impedance (6), as in [20]:

w = Mdë+ Cdė+Gde+ τd (7)

where e = q − qd. The aim of the controller is to make the error signal go to zero as time goes to infinity, that is

lim
t→∞

w(t)→ 0 (8)

Hence, an augmented impedance error is defined as follows:

w̄ = Kfw = ë+Kdė+Kpe+Kfτd (9)

where Kd = M−1d Cd , Kp = M−1d Gd , Kf = M−1d .
Two positive definite matrices are defined as Υ and E such that

Υ + E = Kd

Υ̇ + EΥ = Kp.
(10)

Furthermore, define
τ̇l + Eτl = Kfτd (11)

Thus, (9) can be rewritten as:
w̄ = ë+ (Υ + E)ė+ (Υ̇ + EΥ)e+ τ̇l + Eτl (12)

By defining
z = ė+ Υe+ τl (13)
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The following can be obtained:
w̄ = ż + Ez (14)

From (9) and (14), z = 0 will lead to w = 0. Finally, based on this fact, the aim of the control becomes

lim
t→∞

z(t)→ 0 (15)

Now, consider the outer loop control input as follows:

τ = τs + τf + τ̂d (16)

where τf and τs, are the feedback control torque and switching control torque, respectively. The corresponding
elaborated expressions are given below.

An augmented state variable is first defined as follows

q̇r = q̇d −Υe− τ̂l (17)

where τ̂l is the estimator of τl and satisfies
˙̂τl + Eτ̂l = Kf τ̂d (18)

Furthermore, z̄ and τ̃l are defined as follows

z̄ = ė+ Υe+ τ̂l = z + τ̂l
τ̃l = τ̂l − τl

(19)

Using (17) and (19) one can obtain
z̄ = q̇ − q̇r (20)

The above relation will be used in control performance analysis section. The switching control torque in (16) is given
by

τs = −(K1 ‖q̈r‖+K2 ‖q̇‖ ‖q̇r‖+K3)sgn(z̄) (21)

where K1, K2, K3 are diagonal and positive definite matrices of large enough elements such that

k1,i ≥ kM , k2,i ≥ kC , k3,i ≥ (kG + kd)
for i = 1, 2, ..., n

(22)

The feedback control torque (16) is given by

τf = −Kz̄ (23)

where K is a diagonal positive definite matrix with elements ki, i = 1, 2, ..., n.

Remark 1 When k1,i, k2,i, k3,i, ki are selected identical for i = 1, ..., n, (21) and (23) become fairly simple con-
trollers from implementation point of view, however it may be required to use different k1,i, k2,i, k3,i, ki for better
control performance in some cases.

4. ANALYSIS OF THE SINGULARITIES
It is noted that the existence of task level controller (4) depends on the existence of J−10 . Singular configura-

tions are the configurations in which J0 has rank deficiencies. At singular configurations, J−10 does not exist. For a
6-DOF manipulator, which consists of a 3-DOF spherical wrist and a 3-DOF forearm, J , is a 6× 6 matrix and a con-
figuration is singular if and only if det(J0) = 0. Both the arm and the wrist singularities can cause singularities and
they can be decoupled into arm singularities and wrist singularities, respectively. The Jacobian could be decoupled
in three parts instead of studying the determinant of J0 [21]:

J0 =

[
I U
0 I

] [
I 0
0 Ψ

] [
J11 0
J21 J22

]
(24)

The determinants of Ψ and U cannot be zero. Hence, the singularity conditions are det(J22) = 0 and det(J11) =
0. det(J11) = 0 stands for the forearm singularity. Two singularity conditions can be obtained from the forearm
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Figure 1. Framework for hybrid system controllers [22].

singularity. The so called ”boundary singularity” appears when the elbow is fully extended or retracted and can be
described by following equation

γb = d4c3 − a3s3 = 0 (25)

The other singularity that is called ”interior singularity”, occurs when

γi = d4s23 + a2c2 + a3c23 = 0 (26)

The wrist singularity can be identified by checking the determinant of the matrix J22 to see if the following condition
is satisfied

γw = −s5 = 0 (27)

When two joint axes are collinear, the wrist singularity occurs. Here si and ci represent sin qi and cos qi respectively.
The neighborhood of singularity is defined by positive constants εb, εi, and εw that could be expressed as

|γb| ≤ εb, |γi| ≤ εi, |γw| ≤ εw

5. ROBOTIC HYBRID CONTROLLER
In hybrid control systems, both continuous and discrete dynamic of the system are involved. The development

of such systems is given by equations of motion that generally depends on both continuous and discrete variables.
Fig. 1 shows a general framework for the hybrid system controllers. The hybrid controller is in form of hierarchical
structure that includes a discrete and a continuous layer together. A discrete switching function is designed in order
to select the appropriate continuous function for use. Singular configuration and the previous controller status deter-
mines the situation. When the robot gets close to the singular configuration, at the very first step the hybrid controller
uses damped least squares to achieve an approximate motion of the end effector and then it will switch to joint level
control. The general design procedure is discussed as follows.

The first step in the hybrid controller design is the partition of the workspace and the singularity analysis
of the manipulator. For a given mechanical structures, the singular configuration and the corresponding singular
condition vector Γ can be obtained.

The second step uses the definition of the subspaces to design the switching functions. Two switching function
vectors are required. One is the switching function between region Ω1 and region Ω2 and the other one is the switching
function between the regular region Ω0 and region Ω1. The switching functions can be written as:

ms1 = sgn(β − |γ|)⊕ 0 , ∀γ ∈ Γ (28)

ms2 = ms2(t−)sgn(α+δ−|γ|)⊕0 ⊕ sgn(α− |γ|)⊕ 0, ∀γ ∈ Γ (29)

where sgn(.) is a signum function. The switching function is a function of the singular conditions represented by
Max-Plus Algebra. This part is designed to rule out the chattering feature of a switching controller.

The third step is the design of the continuous controllers. In this step three important fragments must be
considered. In subspace Ω0, matrix J is always invertible and the task level control (4) is effective in this subspace.
In subspace Ω2, the joint level controller is used. Finally, in region Ω1, which is close to a singular configuration,
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a feasible solution of inverse Jacobian can be obtained by pseudo-inverse or singular robust inverse (SRI). The task
level controller (4) still can be used after replacing J† with J−1, where J† is a kind of pseudo-inverse formulated by:

J† = (JT .J + λms1I)−1JT ,

where λ is the damping factor and I is an identity matrix. Therefore, the controller in region Ω1 can be represented by

ud = MJ†(ẍd − J̇ q̇ +KV xex2 +KPxex1) + c+ g (30)

The error dynamics of the system can be formulated by

ėx1 = ex2
ėx2 = (I −K)(ẍd − J̇ q̇)−K(KPxex1 −KV xex2)

(31)

Here the value of K is defined as K = JJ†. The stability analysis of controller (3.1 ) is discussed in [23]. Yet, it can
be proved that the controller based on pseudo-inverse method will cause instability in subspace Ω2 [24]. Although
subspace Ω2 could be very small, it cuts the dexterous workspace into pieces. If the robot cannot travel through
subspace Ω2, the singular configuration will greatly restrict the dexterous workspace. Consequently, joint level control
will be utilized in subspace Ω2 to stabilize the system.

With the continuous controllers in different subspaces and the switch functions, the next step is to formulate
the hybrid robot motion controller in the entire workspace utilizing the switching conditions ms1 and ms2:

u = (1−ms2)ud+ms2uj (32)

where the switch function ms1 is within Eq. (28). The values of ms1 and ms2 determine the continuous controllers
that should be used. ms2 takes the values of 1 or 0 and therefore ud is the controller for subspace Ω0 ∪ Ω1, and uj is
the controller for subspace Ω0 ∪∆. ms1 also takes the values of 1 or 0. When ms1 = 0, ud = ut and therefore Eqs.
(4) and (30) are the same. When ms1 equals unity, the damped least-square method is instantiated, and the inverse
Jacobin is J†. Thus, the design of ms1 and ms2 is the discrete controller as discussed in the second step. The stability
of the hybrid motion controller in the entire workspace should also be verified, based on the stability analysis of the
continuous controllers in their respective region.

Finally, the last step of the hybrid controller design is the path planning of the continuous controllers. Given
the desired path in the task space (xd), controllers (30) and the task level controller (4) can be implemented. But, when
the controller switches to ud from uj , the task representation qd should be transformed to xd by the forward kinematics
equation xd = h(qd). When the controller switches to uj from ud, the task representation xd is transformed to qd,
which involves the inverse kinematics at singular configuration. At the vicinity of singular configuration, a suitable
increment or decrement dx could result in a large increment or decrement dq. dq needs to be reparameterized in joint
space to achieve the velocity and acceleration constraints. The continuity of joint velocities and task level velocities
are also considered in the planning. After switching from task level control to joint level, the initial velocity for every
joint is the joint velocity prior to switching.

6. ANALYSE OF STABILITY
This section discusses the stability of controller (32) when switching between the controllers in (30) and (2) is

involved. To proceed further, the following assumption and properties are needed. Assumption 1: The noise in torque
measurement is bounded and known kd , i.e., ‖τ̃d‖ ≤ kd , where τ̃ = τ̂d − τd and τ̂d is the measurement of τd.

Property 1 The matrix Ṁ(q)−2C(q, q̇) is a skew symmetric matrix ifC(q, q̇) is in the Christoffel form, i.e., xT (Ṁ(q)−
2C(q, q̇))x = 0, ∀x ∈ <n [25].

Property 2 The matrix M(q) is symmetric and positive definite.

Property 3 ‖M(q)‖ 6 kM , ‖C(q, q̇)q̇‖ 6 kC ‖q̇‖ and ‖G(q)‖ 6 kG, where kM , kC , kG are positive scalars [18].

Theorem 1 Considering the robot dynamics described by (1), under Assumption 1, the control design (16) with (21)
and (23) guarantees the following results:

• (i) lim
t→∞

w = 0 is bounded by kd‖Md‖, i.e., ‖ lim
t→∞

w = 0 ≤ kd‖Md‖. When τd is zero, kd = 0 indicates

lim
t→∞

w̄ = 0.
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Figure 2. Workspace Partition.

• (ii) all the signals in the closed-loop are bounded.

Proof 1 Consider the following Lyapunov function:

W (t) =
1

2
z̄TM(q)z̄ (33)

Taking the derivative of (33) gives

Ẇ (t) = z̄TM(q)̇̄z + 1
2 z̄
T Ṁ(q)z̄

= z̄TM(q)̇̄z + z̄TC(q, q̇)z̄
= z̄TM(q)(q̈ − q̈r) + z̄TC(q, q̇)(q̇ − q̇r)
= z̄T ((M(q)q̈ + C(q, q̇)q̇ +G(q))
−(M(q)q̈r + C(q, q̇)q̇r +G(q)))
= z̄T (−Kz̄ − (K1 ‖q̈r‖+K2 ‖q̇r‖ ‖q̇‖+K3)sgn(z̄)+
+τ̃d − (M(q)q̈r + C(q, q̇)q̇r +G(q)))

(34)

where we have used Property 1 and Property 2 in the first equality and (20) in the second equality. Considering
Property 3, we have

z̄T (M(q)q̈r + C(q, q̇)q̇r +G(q)
≤ ‖z̄‖ (‖M(q)q̈r‖+ ‖C(q, q̇)q̇r‖+ ‖G(q)‖
≤ ‖z̄‖ (‖M(q)‖ ‖q̈r‖+ ‖C(q, q̇)‖ ‖q̇r‖+ ‖G(q)‖
≤ z̄T (kM ‖q̈r‖+ kC ‖qr‖ ‖q̇r‖+ kG)sgn(z̄)

(35)

Similarly, from Assumption 1, we obtain
z̄T τd ≤ kdz̄T sgn(z̄) (36)

Substituting (35) and (36) into (34) results in

Ẇ (t) ≤ z̄T (−Kz̄ − (K1 ‖q̈r‖+K2 ‖q̇r‖ ‖q̇‖
+K3)sgn(z̄)) + kdz̄T sgn(z̄)
+z̄T (kM ‖q̈r‖+ kC ‖q̇r‖ ‖q̇‖+ kG)sgn(z̄)
= −Kz̄T z̄ − z̄T ((K1 − kMIn) ‖q̈r‖
+(K2 − kCIn) ‖q̇r‖ ‖q̇‖
+(K3 − kGIn − kdIn))sgn(z̄)
= −Kz̄T z̄ − (K1 − kMIn) ‖q̈r‖ z̄T sgn(z̄)
−(K2 − kCIn) ‖q̇r‖ ‖q̇‖ z̄T sgn(z̄)
−(K3 − kGIn − kdIn)sgn(z̄) ≤ 0

(37)

where In denotes a n-dimension identity matrix. (37) indicates that W is monotonically decreasing. Besides, suppose
that z̄(0) is bounded, which comes from the assumption that e(0) = 0 and τ̂(0) = 0, then W (0) is bounded since
‖M(q)‖ is bounded. Therefore, W will converge to a non-negative fixed value, and thus we have

lim
t→∞

Ẇ = 0 (38)

Immediately, we have the following inequality

Ẇ ≤ −Kz̄T z̄ ≤ 0
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Figure 3. D-H Parameter of PUMA 560.

that leads to
lim
t→∞

z̄ = 0 (39)

Furthermore, with the definition of z̄ in (19), one can write

lim
t→∞

z = lim
t→∞

τ̃l (40)

From (40), (9), (14) and Assumption 1, we finally obtain∥∥∥ lim
t→∞

w(t)
∥∥∥ ≤ kd ‖Md‖

which completes the proof.

Theorem 2 Assume joint level controller (2) is asymptotically stable in workspace and task level controller (4) is
uniformly ultimate bounded in region Ω1. There exists a constant δ > 0, as shown in Fig. 2 and a ∆, such that the
hybrid robot motion controller (32) is ultimate-bounded in the entire workspace of the robot.

7. SIMULATION
Currently most industrial and practical manipulators are six or fewer degrees-of-freedom (DOF). These

manipulators are usually classified kinematically on the basis of the forearm or first three joints, while, the wrist being
described separately. In this article it is assumed that the process of rehabilitation on the patient is accomplished
using the popular PUMA 560. The general form of Jacobian matrix of this robot is as follows

(41)

where JE is

(42)

A constant force is acting on the patient arm. The proposed controller, stabilizes the end effector force with a reason-
able torques acting on joints. Simulation results are sown in Fig. (??). As can be seen from the figure ,.

8. CONCLUDING REMARKS AND FUTURE WORKS
In this work, the human-robot interaction has been investigated and a mixed singularity-free and model-free

impedance model has been simulated on the 6-DOF PUMA 560 robot to guarantee the interaction stability. The
performance of the proposed method has been discussed through rigorous analysis. Simulation results on the robot
arm validate the proposed method.
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Figure 4. The 6-DOF PUMA manipulator [26].
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