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Inverse kinematics of manipulator comprises the computation required to 

find the joint angles for a given Cartesian position and orientation of the end 

effector. There is no unique solution for the inverse kinematics thus 

necessitating application of appropriate predictive models from the soft 

computing domain. Artificial neural network and adaptive neural fuzzy 

inference system techniques can be gainfully used to yield the desired results. 

This paper proposes structured artificial neural network (ANN) model and 

adaptive neural fuzzy inference system (ANFIS) to find the inverse 

kinematics solution of robot manipulator. The ANN model used is a multi-

layered perceptron Neural Network (MLPNN). Wherein, gradient descent 

type of learning rules is applied. An attempt has been made to find the best 

ANN configuration for the problem. It is found that ANFIS gives better 

result and minimum error as compared to ANN. 
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1. INTRODUCTION 

Robot manipulator is composed of a serial chain of rigid links connected to each other by revolute 

or prismatic joints. Each robot joint location is usually defined relative to the neighbouring joint. The relation 

between successive joints is described by 4x4 homogeneous transformation matrices that have orientation 

and position data of robots. The number of those transformation matrices determines the degrees of freedom 

of robots. The product of such matrices produces final orientation and position data of an n degrees of 

freedom robot manipulator. Robot control actions are executed in the joint coordinates while robot motions 

are specified in the Cartesian coordinates. Conversion of the position and orientation of robot manipulator 

end-effectors from Cartesian space to joint space is called as inverse kinematics problem. This is of 

fundamental importance in calculating desired joint angles for robot manipulator design and control. In most 

robotic applications the desired positions and orientations of the end effectors are specified by the user in 

Cartesian coordinates. The corresponding joint values must be computed at high speed by the inverse 

kinematics transformation [1]. For a manipulator with n degree of freedom, at any instant of time the joint 

variable is denoted by  i =   (t), i = 1, 2, 3 .........n and position variables by xj = x(t), j = 1, 2, 3 .......m. The 

relations between the end-effectors position x(t) and joint angle   (t)can be represented by forward kinematic 

equation 

 

 (1) 

 

Where, f is a nonlinear continuous and differentiable function. 

))(()( tftx 
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On the other hand, with the desired end effectors position, the problem of finding the values of the 

joint variables is inverse kinematics, which can be solved by, 

  

 (2) 

 

Inverse kinematics solution is not unique due to nonlinear, uncertain and time varying nature of the 

governing equations [2]. The different techniques used for solving inverse kinematics can be classified as 

algebraic, geometric and iterative. The algebraic methods do not guarantee closed form solutions. In case of 

geometric methods, closed form solutions for the first three joints of the manipulator must exist 

geometrically. The iterative methods converge to only a single solution depending on the starting point and 

may not work near singularities [3-5]. 

The forward kinematic equations always have a unique solution, and the resulting Neural net can be 

used as a starting point for further refinement when the manipulator does become available. Artificial neural 

network especially MLP (multi-layered perceptron) is used to learn the forward and the inverse kinematics 

equations of five degrees freedom (DOF) robot arm [6-7]. This unsupervised method learns the functional 

relationship between input (Cartesian) space and output (joint) space based on a localized adaptation of the 

mapping, by using the manipulator itself under joint control and adapting the solution based on a comparison 

between the resulting locations of the manipulator‟s end effectors in Cartesian space with the desired location 

[6]. 

Many works have been completed related to the neural network-based inverse kinematics solution 

of robot manipulators [8-11].  The present work proposes inverse kinematics solutions based on structured 

MLPNN that can be trained quickly.  

MLP neural network is used to find inverse kinematics solution which yields multiple and precise 

solutions with an acceptable error and are suitable for real-time adaptive control of robotic manipulators [12]. 

Therefore, the main aim of this work is focused on minimizing the mean square error of the neural network-

based as well as ANFIS based solution of inverse kinematics problem. The result of each technique is 

evaluated by using inverse kinematics equations to obtain information about their error. In other words, the 

angles obtained for each joint are used to compute the Cartesian coordinate for end effector.  

The training data for ANN and ANFIS have been selected very precisely. Especially, unlearned data 

in each neural network and ANFIS have been chosen, and used to obtain the training set of the last  network. 

 

 

2. KINEMATIC  MODELING OF 5R MANIPULATOR 

The Denavit-Hartenberg (D-H) notation and methodology are used in this section to derive the 

kinematics of robot manipulator. The Denavit/Hartenberg (or D-H) technique has become the standard 

method in robotics for describing the forward kinematics of a manipulator. Essentially, by careful placement 

of a series of coordinate frames fixed in each link, the D-H technique reduces the forward kinematics 

problem to that of combining a series of straightforward consecutive link-to-link transformations from the 

base to the end effector frame. Using this method, the forward kinematics for any manipulator is summarized 

in a table of parameters (the D-H parameters). The coordinate frame assignment and the DH parameters are 

depicted in Figure 1 and listed in Table 1 respectively, where to represents the local coordinate frames at the 

five joints respectively, represents the local coordinate frame at the end-effector, where θi represents rotation 

about the Z-axis, αi rotation about the X-axis, transition along the Z-axis, and transition along the X-axis [1], 

[3]. 

 

 

Table 1. The D-H Parameters 

 

 

 

 

 

 

 

 

 

The transformation matrix Ai between two neighbouring frames Oi−1 and Oi is expressed in 

equation (1) as,   

))(()( ' txft 

Frame 
i (degree) id (mm) ia (mm) i  (degree) 

O0 - O1 θ1 d1= 150 a1= 60 -90 

O1– O2 θ2 0 a2= 145 0 
O2– O3 -90 + θ3 0 0 -90 

O3– O4 θ4 d2= 125 0 90 

O4– O5 θ5 0 0 -90 
O5– O6 0 d3= 130 0 0 
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Figure 1. D-H frames of the SCARA robot. 
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(3) 

 

By substituting the D-H parameters in Table 1 into equation (3), the individual transformation 

matrices A1 to A4  can be obtained and the general transformation matrix from the first joint to the last joint 

of the manipulator can be derived by multiplying all the individual transformation matrices (
0
T4).  
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(4) 

 

 Where )p,p,p( zyx represents the position and ),,(),,,(),,,( zyxzyxzyx aaaandooonnn

represents the orientation of the end-effector. The orientation and position of the end-effector can be 

calculated in terms of joint angles and the D-H parameters of the manipulator are shown in following matrix 

as:  
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 (5) 

where,  

)sin()cos(

),sin(),cos(
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By equalizing the matrices in equation (4) and (5), the following equations are derived 

112122312

523135413542313

caccaccd

cccdsssdscscdpx



  
(6) 
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11212231252313

5413542313

sacsacsdccsd

sscdscssdp y




 (7)     

                 
 

1222325232

523354233

dsasdcsd

csdsccdp z



  
(8) 

 

523154154231 scccssccscnx   (9) 
                             

 

523154154231y scscscccssn   (10) 
                        

 

5235423z sscccn   (11) 
                                                                          

 

414231x csssco   (12) 
                                                                    

 

414231y ccssso   (13) 
                                                                            

 

423z sco   (14) 
                                                              

 

523154154231x ccccssscsca   (15) 
                            

 

523154154231y ccssscscssa   (16) 
         

 

5235423z csscca   (17) 

 

From equations (6) through (17), the position and orientation of the arm end-effector can be 

calculated and provide all the joint angles. This gives solution to the forward kinematic problem. It is obvious 

that the inverse kinematics solution is difficult to obtain. This work uses various tricky strategies to solve the 

inverse kinematics of the robot manipulator. 

From equations (6) and (15), the following equation is derived: 
                             

 
)( 12223213 acacdcadp xx   (18) 

 

Similarly by manipulating in similar way from (7) and (16), the following equation is derived as: 

                                     

)( 12223213 acacdsadp yy   (19) 

 

It can be noted that the values of  2   and 3  in robot manipulator only takes integral values in a 

limited range. By checking all possible joint angles 2  and  3  that 0)( 122232  acacd   holds good, which 

means that 
xx adp 3   and 

yy adp 3   will not equals to zero at same time. If   0)( 122232  acacd , the solution 

for 1   is,                
                                                                  

 
),(2tan 331 xxyy adpadpa   (20) 

 

Otherwise,                              
 

 
),(2tan 331 xxyy padpada   

 

 

(21) 

 

  For deriving solutions for 2   and 3 , (18) and (19) can be represented as follows:   
                                          

 

11322232 /)( acadpcacd xx   (22) 
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11322232 /)( asadpcacd yy   (23) 

 

 

From (8) and (17), the following equation can be derived:            

 
           

 

1222323 dsasdadp zz    (24) 

 

 

Now considering (22) and (24),  

Let                                   
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(25) 

 

 

 And                         
 

 

122232 dsasdrz   
 

 

(26) 

 

Now squaring the equations (25) and (26) followed by adding it, equation (27) can be derived as 

follow:  
                                                                                   

 
22

223223222

2

2 )(2 zrrassccdad   (27) 

 

Solving the terms 232232 sscc   in the above equation (27), we get 
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Therefore, there are several possible solutions for 3  , which are as follows: 
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(29) 

 

Now consider the possible solutions for 2 . For the sake of convenience, equation (24) can be 

rewritten as equation (30), 
                            

 

221232 saBsd   (30)   

 

where, 
112 Bdpad zz           

 

Considering the equations (22) and (23), equation (31) is derived as, 
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  Let     2

3

2

3 2 )()(=B yyxx pdapda  ,     so equation (31) can be rewritten as, 

                                        

222232 caBcd   (32) 

 

Rearranging equation (28), (30) and solving for 21 B,B . Equation (31), (32) is derived as:                             
                              

 

23222321 c )s(d + s )a + c(d = B  (33) 

                      
  

 

23222322 s )s(d - c )a + c(d = B  (34) 

 

Diving both side of (33) and (34), by 2
2

2
1 BB  , equation (35) and (36) is derived as,  
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The equation (34) and (35) are rewritten as, 
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  And,                                                                                   
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Where m = -1, 0 or1. It is clear that    could be in  ,0  or  0, . The range of will depend on the 

range of 3 . Therefore, if   30  , then 0s3    and 0)sin(   , thus 0  . Then 2  can be derived 

as:  
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Otherwise, if 03   , then 0s3   and 0)sin(  , thus 0  . Then the next possible 

solution for 2   is as:  
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Now that 321 and,    are known, the solutions for   4 and 5  can be found by using the 

remaining forward kinematics equations. Considering equation (14), the value of 

 



IJRA ISSN: 2089-4856  

 

Inverse Kinematic Solution of 5R Manipulator Using ANN and ANFIS (Panchanand Jha) 

115 

23

z
4

c

o
=  s  , 

 

when 0c23   

(41) 

Similarly from equation (12) and (13), the possible solution for  4c   is derived as:          
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Using equation (42) and (43) for small value of 1c  , the solution for  4  is 
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Otherwise for small 1s  ,                                                               
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Now for solution of 5  , considering equation (11), the value of   
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Similarly the value of  5s  is derived by using equation (17) i.e.,        
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Using equation (43) in (42) and vice versa, the term 5c  and 5s   is rewritten as: 
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Now using this above derivation of  5c  and 5s  , 5   is derived as follows:  

                                                                                       

    z23423zz23423z5 asccn,nscca2tana   (48) 

 

It is obvious from the given equations from (3) through (48) that there exist multiple solutions to the 

inverse kinematics problem.  The above derivations with various conditions being taken into account provide 

a complete analytical solution to inverse kinematics of arm. It is noted that there exist two possible solutions 

for 
54321 ,,,  and  depicted in (20) or (21), (39) or (40), (28) or (29), (44) or (45) respectively. So to 

know which solution holds good to study the inverse kinematics, all joints angles are obtained and compared 
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using forward kinematics solution. This process is been applied for
54321 ,,,  and . To choose the 

correct solution, all the four sets of possible solutions (joint angles) calculated, which generate four possible 

corresponding positions and orientations using the forward kinematics. By comparing the errors between 

these four generated positions and orientations and the given position and orientation, one set of joint angles, 

which produces the minimum error, is chosen as the correct solution. The solutions (21), (39), (28), (45) and 

(48) holds correct for obtaining the values of 
54321 ,,,  and  respectively. 

 

 

3. ARCHITECTURES OF ANN AND ANFIS 

3.1  Architecture of MLPNN 

It is well known that neural networks have the better ability than other techniques to solve various 

complex problems. Inverse kinematics is a transformation of a world coordinate frame (Px, Py, and Pz) to a 

link coordinate frame (
54321 ,,,  and ). This transformation can be performed on input/output work 

that uses an unknown transfer function. MLP neural network's neuron is a simple work element, and has a 

local memory. A neuron takes a multi-dimensional input, and then delivers it to the other neurons according 

to their weights. This gives a scalar result at the output of a neuron. The transfer function of an MLP, acting 

on the local memory, uses a learning rule to produce a relationship between the input and output. For the 

activation input, a time function is needed [4], [17].  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Multi-layered perceptron neural network structure 

 

 

We propose the solution using a multi-layered perceptron with back-propagation algorithm for 

training. The network is then trained with data for a number of end effector positions expressed in Cartesian 

co-ordinates and the corresponding joint angles. The data consist of the different configurations available for 

the arm.  

A block diagram of the structure is shown in Figure 2. The signals, Ojn, are presented to a hidden 

layer neuron in the network via the input neurons. Each of the signals from the input neurons is multiplied by 

the value of the weights of the connection, wj, between the respective input neurons and the hidden neuron. 

The network uses a learning mode, in which an input is presented to the network along with the 

desired output and the weights are adjusted so that the network attempts to produce the desired output. 

Weights after training contain meaningful information whereas before training they are random and have no 

meaning.  

Net input of hidden neurons (for k inputs) =  

 

 

(

(49) 

 

The output, Omj of a hidden neuron as a function of its net input is described in equation (49). The 

sigmoid function is: 
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Once the outputs of the hidden layer neurons have been calculated, the net input to each output layer 

is calculated in a similar manner as in equation (50). 

 
'

( )( )mn d of  
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(51) 

  

(1 )( )m m mo o d o   
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Where d is the target or desired value, and Om is the actual value from output neuron after going 

through the feed forward calculation. The error calculation was implemented on a neuron-by-neuron basis 

over the entire set (epoch) of patterns. This error value δ was used to perform the appropriate weight 

adjustments of the weight connection between the output layer and hidden layer.  
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Where δh the error value of the hidden layer is, δl is the error value of the output layer, Oh is the 

output of the sigmoid function and Wlh is the connection weights between the output and hidden layers. The 

weight changes were calculated according to equation (52). 
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(

(53) 

 

 In this work, a five hidden layer neural network with three inputs, x, y and z, and five outputs, θ1 , θ 

2, θ 3 , θ 4, and θ 5  was trained using the back-propagation algorithm described earlier, along a trajectory of 

the end-effector in the xy -plane. 

 

3.2 Architecture of ANFIS 

The ANFIS can perform the mapping relation between the input and output data through a learning 

algorithm to optimize the parameters of a given FIS. The ANFIS architecture consists of fuzzy layer, product 

layer, normalized layer, de-fuzzy layer, and summation layer. A typical architecture of ANFIS is shown in 

Fig. 3, in which a circle indicates a fixed node, whereas a square indicates an adjustable node. For example, 

we consider two inputs x, y and one output z in the FIS. The ANFIS used in this paper implements a first-

order Sugeno FIS. Among many fuzzy systems, the Sugeno fuzzy model is the most widely applied, because 

of its high interpretability and computational efficiency, and built-in optimal and adaptive techniques [8].  

For a first-order Sugeno fuzzy system, the typical rule set can be expressed as: 

 

Rule 1: If x is A1 and y is B1, then z1 = p1x + q1y + r1 

Rule 2: If x is A2 and y is B2, then z2 = p2x + q2y + r2 

 

where  Ai and Bi are the fuzzy sets in the antecedent, and pi, qi, and ri are the parameters that are 

assigned during the training procedure. As in Fig. 3, the ANFIS consists of five layers. Every ith node in the 

first layer is an adaptive node with a node output defined by: 
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 can adopt any fuzzy membership function (MF). In this paper, the 

following Gaussian MF is used: 
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Where {ci , si} is the parameter set that changes the shapes of the MF. The parameters of this layer 

are termed the premise parameters.  Every node in the second layer is a fixed node labelled Π, whose output 

is the product of all the incoming inputs: 
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Figure 3.  Architecture of ANFIS 
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Each node output represents the firing strength of a rule. 

Every node in the third layer is a fixed node labelled N. In this layer, the average is calculated based 

on weights taken from fuzzy rules: 
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Where i   is referred to as the normalized firing strengths. Every ith node in the fourth layer is an 

adaptive node with the following node function: 
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Where i  is the output of layer 3, and {pi, qi, ri} is the parameter set. The parameters of this layer 

are termed the consequent parameters. The single node in the fifth layer is a fixed node labeled Σ that 

computes the overall output as the summation of all incoming inputs: 
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3.2.1 Learning algorithm 

It is seen from the ANFIS architecture that when the values of the premise parameters are fixed, the 

output of the ANFIS can be calculated as: 
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Substituting Eq. (5) into Eq. (8) yields: 

 

2211 zzz    

 

Substituting the fuzzy if-then rules into Eq. (9), it becomes: 
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After rearrangement, the output can be written as a linear combination of the consequent 

parameters: 
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The optimal values of the consequent parameters can be found by using the Least-Square Method 

(LSM). When the both premise and consequent parameters are adaptive, the search space becomes larger and 

the convergence of training becomes slower. The hybrid learning algorithm [12], combining the LSM and the 

back propagation algorithm can be used to solve this problem. This algorithm converges much faster because 

it reduces the dimension of the search space of the back propagation algorithm. During the learning 

procedure, the premise and consequent parameters are tuned until the desired response of the FIS is achieved. 

The hybrid learning algorithm is divided into two steps: forward pass and a backward pass. In the forward 

pass, while the premise parameters are held fixed, the network inputs propagated forward until layer 4, where 

the consequent parameters are identified by the LSM. In the backward pass, the consequent parameters are 

held fixed while the error signals are propagated from the output end to the input end, and the standard back 

propagation algorithm updates the premise parameters. Figure 3 shows the procedure of ANFIS training. This 

paper considers three ANFIS structure with first-order Sugeno fuzzy system for three joint angles. Figure 4 

shows the structure of ANFIS model. Gaussian MFs with product inference rule are used at the fuzzification 

layer. Hybrid learning algorithm that combines LSM with back propagation algorithm is used to adjust the 

premise and consequent parameter. 

 

 

 
 

Figure 4. ANFIS model structure 

 

 

4. RESULTS AND PERFORMANCE ANALYSIS 

4.1 MLPNN simulation and result 

The proposed work is performed on the Matlab Neural Networks Toolbox. „Premnmx‟ function is 

used for preprocessing of input and outpur data. Then, the function „newff‟ is used to create a feed forward 

network for inverse kinematics. Further, the same network is trained according to „tansig‟ and „logsig‟ 

transfer function. The training functions employed are „trainoss‟ and „trainlm‟, to validate the performance of 

MLPNN neural network for inverse kinematics problem. Then, the weights and biases are calculated for the 

network. To simulate the data corresponding to the task considered here, the new input data to the trained 

network are preprocessed with the „traimnmx‟ function. Then, the outputs simulated by the trained network 

are post processed back using the „postmnmx‟ function. 

In this work the training data sets were generated by using equation (3) through (17). A set of 1000 

data sets were first generated as per the formula for the input parameter px, py and pz coordinates in inches.  

These data sets were the basis for the training, evaluation and testing the MLPNN model. Out of the sets of 

1000 data points, 900 were used as training data and 100 were used for testing for MLPNN as shown in table 

2. The following parameters were taken: 

 

Table 2. Configuration of MLPNN 

Sl. Parameters Values taken 

1 Learning rate 0.59 

2 Momentum parameter 0.68 

3 Number of epochs 10000 

4 Number of hidden layers 2 

5 Number of inputs 3 

6 Number of output 5 

7 Target datasets 1000 

8 Testing datasets 900 

9 Training datasets 100 
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Back-propagation algorithm was used for training the network and for updating the desired weights. 

In this work epoch based training method was applied. 

The mean square curve shown in Figure 5 through Figure 9 in result, the used solution method gives 

the chance of selecting the output, which has the least error in the system. So, the solution can be obtained 

with less error. Figure 5 through Figure 9 shows the validation curve for the Problem of learning the inverse 

kinematics of the 5-DOF manipulator.  These errors are small and the MLPNN algorithm is, therefore, 

acceptable for obtaining the inverse kinematics solution of the robotic manipulator. Figure 10 shows the 

graphical view of regression with respect to number of epochs and it‟s almost gives 99.99%. 

Table 4 shows comparison between the MLPNN with respect to ANFIS. Generalization tests were 

carried out with new random target positions showing that the learned MLPNN gives a deviation of 0.29599 

of the error goal during the learning process and ANFIS gives 0.004448 average errors which is better than 

the mean square error of MLPNN.  

 

 

  
Figure 5. Mean square error for 1 Figure 6. Mean square error for 2 

 

 

  
Figure 7 . Mean square error for 3 Figure 8. Mean square error for 4 

 

 

 

  
Figure 9. Mean square error for 5 

 
Figure 10. Regression coefficient plot for joint variables. 
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4.2 ANFIS simulation and results 

Data set were generated by using inverse kinematic equations. The coordinates (px, py and pz) and 

the angles (1, 2, 3, 4, and 5) are used as training data to train ANFIS network with Gaussian 

membership function with hybrid learning algorithm.  A set of 1000 data sets were first generated as per the 

formula for the input parameter px, py and pz coordinates in mm.  These data sets were the basis for the 

training, evaluation and testing ANFIS. Out of the sets of 1000 data points, 700 were used as training data 

and 300 were used for testing the performance of ANFIS. 

In the training phase, the membership functions and the weights will be adjusted such that the 

required minimum error is satisfied or if the number of epochs reached. At the end of training, the trained 

ANFIS network would have learned the input/output map and it is tested with the deduced inverse 

kinematics. Figure 11 through figure 15 shows the difference in joint variables analytically and the data 

predicted with ANFIS. 

Table 3 shows configuration of ANFIS. Figure 11 through Figure 15 shows the validation curve for 

the problem of learning the inverse kinematics of the 5-DOF manipulator. Table 4 gives the average errors of 

joint variables using ANFIS. These errors are small and the ANFIS algorithm is, therefore, acceptable for 

obtaining the inverse kinematics solution of the robotic manipulator. 

 

 

Table 3. Configuration of ANFIS 
Parameters value 

Number of nodes 734 
Number of linear parameters 343 

Number of nonlinear parameters 63 

Total number of parameters 406 
Number of training data pairs 700 

Number of checking data pairs 0 

Number of fuzzy rules 343 

 
 

Table 4. Comparison oresults 

Sl. 
Average testing Error 

of MLPNN 

Epoch Number 

MLPNN 

Average testing Error 

of ANFIS 

Epoch Number 

ANFIS 

1 0.112475 10000 0.0035263 10 

2 0.451253 10000 0.0029383 10 

3 0.336321 10000 0.013536 10 

4 0.258163 10000 0.0016652 10 

5 0.321749 100000 0.00057395 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 14. Mean square error for 

  

Figure 13. Mean square error for 3 Figure 12. Mean square error for 

  

Figure 11. Mean square error for 1 
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5. CONCLUSION 

In this paper, we have selected two methods which are ANN and ANFIS to obtain the solution of 

inverse kinematics of 5R manipulator. In this approach forward and inverse kinematic model of 5R 

manipulator is used to generate the data set for training the ANN and ANFIS model. The difference in 

desired and predicted data with ANN, gives poor results as compared to ANFIS. Also, the ANFIS 

accumulate small number of epoch with hybrid learning algorithm. Therefore, ANFIS can be used for 

accurate and fast solution of inverse kinematics.  

Future research will revise the rules, inputs, number and type of membership functions, the epoch 

numbers used, and training sample to further refine the ANFIS model. 
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Figure 15. Mean square error for 5 
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