Semi-automated mid-turbinate swab sampling using a six degrees of freedom collaborative robot and cameras

Michael Leung1, Ricardo Ortiz1, Bruce W. Jo2
1Department of Mechanical Engineering, State University of New York, Incheon, Korea
2Advanced Dynamics, Aerospace, and Mechatronic Systems Laboratory, Department of Mechanical Engineering, Tennessee Technological University, Cookeville, United States of America

ABSTRACT

Mid-turbinate swab sampling is an effective way to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Several articles discussed the importance and benefits of using robotic technology to alleviate healthcare workers’ daily burdens against coronavirus disease 2019 (COVID-19). Therefore, a semi-automated approach for collecting swab samples from the mid-turbinate area—approximately 4 cm inside the nose—is proposed. The system utilizes a six-degrees-of-freedom (6-DOF) Doosan Robot M1509 and two smart visual sensors: one on the end effector and the other fixed to the side for estimating the angle of the nasal path. This work suggests a method of robot and human collaboration in the sampling process that could minimize infections from samplings and guarantee uniformly administered sampling processes. The effectiveness of this proposed work was tested on a live patient and a phantom head; meanwhile, the insertion process was only administered on the phantom head. Although the overall time of the experiment was greater than a manual swab, the feasibility of implementing robotic applications for COVID-19 swab sampling has been practically showcased in this paper.

Keywords:
Cameras
Collaborative robots
Coronavirus disease testing
Medical robots
Robot-assisted systems
Robotics manipulators

1. INTRODUCTION

With the rise of novel variants, coronavirus disease 2019 (COVID-19) may stay for many years. Telenti et al. [1] stated that the mass deployment of vaccinations may signal the end of the COVID-19 pandemic, but it does not indicate the end of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The article suggests that one of the future scenarios is transitioning to a seasonal illness and being categorized as an endemic disease. Also, healthcare workers have one of the highest rates of infections and represent 3.9% of all coronavirus-related infections as surveyed on May 2020 [2]. For this reason, several articles discuss the importance and benefits of using robotic technology to alleviate the healthcare team’s daily burdens [3], [4]. For example, Dheeraj et al. [5] presented a design concept and implementation of a lightweight six degrees of freedom (6-DOF) robot manipulator for handling and sorting vaccines in a cold environment. Robotic applications for COVID-19 swabbing tests for the nasopharyngeal [6] and oropharyngeal [7] areas showed that those automated applications minimized the rate of infections among healthcare workers and patients. Other related benefits include faster swab times, a less frightening patient experience, and higher quality swab tests than manual testing. Kawasaki Heavy Industries [8] introduced a
Semi-automated mid-turbinate swab sampling using a six degrees of freedom … (Michael Leung)
fit. The designed end-effector plate shares the exact center with the tool flange, so the swab aligns with the central axis and passes through the tool’s origin. Furthermore, the visual sensor used for the frontal vision of the patient’s nose is a Pixy2 CMUcam5. The system was tested using a phantom head. A secondary visual sensor fixed to the side estimates the head angle by detecting the color pattern from a color bar whose top edge is aligned with the earlobe and the tip of the nose. The color bar and fixed Pixy2 are held up by a clamp apparatus comprising links and nuts for the desired setup.

3. METHODOLOGIES

3.1. Tool center position

The swab’s tip determines the tool center position as shown in Figure 3, which front view is in Figure 3(a). Since the swab reached the tool flange, the tool center position (TCP) was set to 10 cm in the Z-direction as depicted in Figure 3(b). Then, it is adjusted to allow movement about the swab end.

3.2. Color code generation

It is necessary to register the color pattern on the color bar. In PixyMon software, the Pixy2 camera is trained to recognize the three colors by setting three color codes (also called CC signatures). The operator selects an area of the target color to declare the CC signatures. The embedded software will highlight the pattern and display an angle respective to the horizontal axis.

For alignment of the swab, the operator estimates the angle of the turbinate’s path. It is achieved by aligning the top edge of the tricolor bar between the earlobe and the tip of the nose. These processes are shown in the series of Figures 4 to 6.
Figure 4. Output information from the Pixy 2 camera Figure 5. Nose tip to earlobe angle measurement

Figure 6. Alignment process for phantom head patient

The cockpit of the robotic manipulator, shown in Figure 7, allows the operator to move the end effector manually. Button 1 of the cockpit allows movement in any direction that force is applied. Pressing button 2 fixes the TCP and only allows movement about the swab end as shown in Figure 7. Then, the teach pendant can fix the 3D coordinates of the tip of the swab and change the angle of the end effector. So, the user can input the angle registered by the visual sensor in the teach pendant. After positioning the end effector with the target angle, the operator may get the robot ready to perform the insertion. The teach pendant allows the operator to create a simple program to insert the swab in a straight line and rotate the end effector to collect a swab sample.

Figure 7. Cockpit of the robot manipulator
4. EXPERIMENTS

4.1. Alignment process

In a collaborative environment between the operator and the robotic manipulator, a semi-automatic approach is proposed to collect the mid-turbinate swab sample from a patient. The operator places the tip of the swab at the entrance of the patient’s nose by pressing button 1 (one) and freely moving the end effector of the 6-DOF robotic arm, which can be seen in Figure 8 via the display of the Pixy 2 camera on the end effector, the operator confirms that the yaw angle of the swab will not be approaching the septum or sidewalls of the nose.

Next, the operator aligns the leading edge of the color bar from the patient’s nose tip to their ear lobe. The PixyMon software detects the color bar and displays the head angle φ, shown in Figure 9. Because the head angle φ was calculated with respect to the horizontal axis of the external Pixy 2 camera, the target tool angle B can be calculated by adding φ to 90°. Note that Tool angle B on the teach pendant reads 90° when the end effector and swab are in a horizontal position.

Then, the operator presses button 2 (two) from the cockpit and manipulates the end effector vertically until tool angle B as shown in Figure 10 reaches the target angle. Remind that button 2 on the cockpit is programmed to allow the operator to manipulate the end effector while keeping the TCP’s endpoint or swab end fixed. As a result, the operator could align the swab’s pitch angle with the patient’s head angle, as shown in Figure 11. For the safety of the experiment patient, the insertion process will be administered only to the phantom head, and the alignment process is also repeated for the phantom head.
4.2. Insertion and sampling process

Finally, the operator runs the insertion program in the teach pendant to collect the mid-turbinate sample. As shown in Figure 12, the end effector travels 4 cm in the longitudinal direction of the swab, rotates the 6th joint, retreats 4 cm, and rotates back to the initial position. Note that a target depth between 4 and 8 cm can be programmed for a better-quality sample. The maximum limit of the target depth is set to 8 cm due to the length of the swab and the distance that the swab can insert before the patient’s nose touches the end effector.

5. SUMMARY

This paper introduces a semi-automatic approach to collecting COVID-19 nasal samples in the mid-turbinate region. For the experiment, the 6-DOF robotic manipulator acts as a collaborative robot or robot with an operator to collect the swab specimen. The addition of two Pixy 2 cameras, one on-end effector and
one fixed for side view, assists the operator in determining the proper yaw and pitch angles of the swab. The time of alignment process resulted in between 1-2 minutes for the live patient and the phantom head patient. The alignment process varies depending on the patient’s head shape, the operator’s ability to handle the robotic arm, and the levelness of the fixed Pixy 2 camera. The level adjustment of the fixed camera ensures that it is parallel to the horizontal plane and is obtained using a level tool. The sampling process on the phantom head patient resulted in 1 minute, making the total experiment about 3 minutes. Although the entire experimental process is longer than the sampling process of a manual swab test, which may be administered in less than 1 minute, it proves the effectiveness and feasibility of implementing robotic applications for COVID-19 swab sampling. Since this experiment followed several manual procedures, a fully automated procedure can bring the overall sampling time closer to that of a manual swab. However, it was concerned with the importance of getting the procedural time closer to that of a manual swab test; it is also important to highlight other benefits of adopting robotic applications for COVID-19 swab sampling. Implementing a 6-DOF robotic manipulator with smart visual sensors will conserve labor, promote safety between patients and healthcare workers, minimize pain or discomfort, and permit COVID-19 swab tests to locations lacking healthcare workers.

6. DISCUSSION AND FUTURE WORK

Future development as an add-on to already existing features is considered to advance the algorithm and more accurate sampling. By implementing AI-based smart cameras, the alignment process can be done manually. First, train the end effector camera to detect the nasal entrance centroid, mid-nasal ridge, and swab. This allows the robotic arm to move the swab tip to the nasal entrance centroid and adjust the yaw angle to parallel the mid-nasal spine. Second, train the fixed smart camera to recognize the tip of the nose and the earlobe of the patient. The head angle can be obtained by visualizing a line between these two points and measuring with respect to the horizontal axis. As a result, the alignment process is automated using AI smart cameras. For the safety of patients, a force-feedback sensor may be implemented in the end effector to receive forces pushing back on the swab if the swab obstructs a nasal wall. Pain tolerance varies between individuals, so data on forces that patients can handle in the nasal area has to be collected. With this data, we can create a pain threshold that will alert the robotic arm to retreat and adjust its angle. Lastly, a micro-endoscope with cotton swab attachments is proposed to navigate the interior of the nasal pathway. This will permit micro-adjustments of the robotic arm when entering the nose and collecting the specimen. All of the above would help the transition to a fully automated procedure.

ACKNOWLEDGEMENTS

This work is partially supported by the State University of New York (SUNY), Korea.

REFERENCES

Semi-automated mid-turbinate swab sampling using a six degrees of freedom... (Michael Leung)

BIOGRAPHIES OF AUTHORS

Michael Leung is a former M.S. student in the Department of Mechanical Engineering at SUNY (The State University of New York), Korea. He got his B.S. degree in Mechanical Engineering from the State University of New York, Stony Brook University, NY. Now, he can be contacted at Michael.Leung@sunykorea.ac.kr.

Ricardo Ortiz is a former M.S. student in the Department of Mechanical Engineering at SUNY (The State University of New York), Korea. Now he is a Ph.D. student in Mechanical Engineering at SUNY Korea. He is associated with MEIC Laboratory. He can be contacted at Ricardo.Ortiz@sunykorea.ac.kr.

Bruce W. Jo is an associate professor in the Department of Mechanical Engineering at Tennessee Technological University, Cookeville, TN USA. Before, he was an Associate Professor at the State University of New York (SUNY) Stony Brook, and a tenured Associate Professor at Tennessee State University (TSU), Nashville TN. Prior to that he also worked as a tenure-track Assistant Professor at Embry-Riddle Aeronautical University during 2011-2014 and at Florida State University as Research Associate during 2010-2011. His main research interests are: i) the design and control of morphorous structures (4D printing), ii) the design of flight control systems, iii) the dynamics/kinematics and mechanism design of mechanical systems, and iv) the design of feedback control allocator for manned/unmanned aerial vehicles in the applications of aerospace, mechanical, and robotic systems. Since 2016, he has been working for and collaborating with many government agencies in the United States including Air Force Office of Scientific Research (AFOSR), Air Force Research Laboratory (AFRL), Army Research Laboratory (ARL), and Oak Ridge National Laboratory (ORNL). He earned his Ph.D. in Mechanical Engineering from Columbia University, NY in 2010, his M.S. in Mechanical Engineering from New York University, NY in 2006, and his B.S. in Electrical Engineering in 2003. He can be contacted at b.jo@tntech.edu.