Dynamic Control of Mobile Robot Using RBF Global Fast Sliding mode

Ali Mallem, Noureddine Slimane, Walid Benaziza

Abstract


This paper mainly In this paper a dynamic control of mobile robot using RBF global fast sliding mode (RBF-GFSM) strategy is presented. Firstly a GFSM controller is used in order to make the linear and angular velocities converge to references ones in finite time. However a problem of instability of velocities is appeared by introducing disturbances in the system. Secondly, a combined controller using RBF-GFSM approach is applied in aim to stabilize the velocities errors and estimates the nonlinear function of the robot model. The system stability is done using the lyapunov theory. The proposed controllers are dynamically simulated using Matlab/Simulink and the simulations results show the efficiency and robustness of the proposed control strategy.


Keywords


Dynamic model; Global fast sliding mode; Lyapunov stability; RBF neural network

Full Text:

PDF


DOI: http://doi.org/10.11591/ijra.v7i3.pp159-168

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics