Self-tuning Fuzzy Task Space Controller for Puma 560 Robot

Azita Azarfar


Since in most robot applications the desired paths are determined in task space or Cartesian space, it is important to control the robot arm in task space. In this paper a fuzzy controller with modifiable scaling factors is proposed to control the robot end-effector in task space. The controller is a fuzzy system with a mechanism to change the scaling factors when the error is bounded under a predetermined value. The controller is designed in joint space and is developed to work space by using inverse Jacobian strategy. The simulations results on Puma 560 robot manipulator illustrate the high performance of presented control method.


Inverse Jacobian method; Puma 560; Robot task space; Robot tracking; Self-tuning fuzzy system;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics