Switched time delay control based on neural network for fault detection and compensation in robot

Maincer Dihya, Mansour Moufid, Boudjedir Chemseddine, Bounabi Moussaab

Abstract


Fault detection in robotic manipulators is necessary for their monitoring and represents an effective support to use them as independent systems. This present study investigates an enhanced method for representation of the faultless system behavior in a robot manipulator based on a multi-layer perceptron (MLP) neural network learning model which produces the same behavior as the real dynamic manipulator. The study was based on generation of residue by contrasting the actual output of the manipulator with those of the neural network; Then, a time delay control (TDC) is applied to compensate the fault, in which a typical sliding mode command is used to delete the time delay estimate produced by the belated signal in order to obtain strong performances. The results of the simulations performed on a model of the SCARA arm manipulator, showed a good trajectory tracking and fast convergence speed in the presence of faults on the sensors. In addition, the command is completely model independent, for both TDC and MLP neural network, which represents a major advantage of the proposed command.

Keywords


Artificial neural network, Fault detection, Multi-layer perceptron, Robot manipulator (SCARA), Sliding mode control, Time delay and control

Full Text:

PDF


DOI: http://doi.org/10.11591/ijra.v10i2.pp91-103

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics