A hybrid gradient climbing algorithm for a swarm robot-based gas leak detector
Abstract
Methane emissions from leak sources can have a negative climate impact, in addition to contributing to the risk of explosions in urban environments. These risks can be minimized by developing systems that provide for an accurate and timely detection and localization of a gas leakage point. This research used a swarm of robots to detect and locate a leakage point. The localization algorithm derives from further optimization of the gradient climbing algorithm using fireflies acting as opportunistic agents. Firefly agents are characterized by their bioluminescent communication which guides them to dynamically adjust their positions and intensities based on the quality of the gradient information available to them. The proposed research focuses on enhancing gas leak detection through the development of a hybrid gradient climbing algorithm. This algorithm integrates gradient climbing techniques with swarm intelligence, utilizing the strengths of both approaches. This simulation resulted in the hybrid algorithm leading to a reduced convergence time and path lengths when compared to the swarm without opportunistic agents. The suggested approach can be important especially in gas distribution systems or in areas where human intervention is considered to be unsafe.
Keywords
Convergence time; Firefly agents; Gas leakage detection; Gradient climbing ; Opportunistic agents ; Path length; Swarm intelligence; Swarm robotics
Full Text:
PDFDOI: http://doi.org/10.11591/ijra.v13i3.pp255-263
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).