Adaptive Sliding Mode Controller Design For Attitude Small UAV

Samaneh Amini


The dynamic of Unmanned Aerial Vehicle (UAV) is nonlinear, strongly coupled, multi-input multi-output (MIMO), and subject to uncertainties and external disturbances.  In this paper, an adaptive sliding mode controller (ASMC) is integrated to design the attitude control system for an inner loop fixed wing UAV. In the proposed scheme, sliding mode control law parameters due to uncertainty are assumed to be unknown and are estimated via adaptation laws. The synthesis of the adaptation laws is based on the positivity and Lyapunov design principle. Navigation outer loop parameters are regulated via PID controllers. Simulation results indicate that the proposed controller design can stabilize the nonlinear system, and it is robust to parametric model uncertainties and external disturbance.

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics