Delta Parallel Robot Based on Crank-Slider Mechanism

Zhe Qin, Xiao-Chu Liu, Zhuan Zhao


A three-degree-of-freedom Delta parallel manipulator driven by a crank-slider mechanism is proposed. In Cartesian space, a gate-shaped curve is taken as the path of the pick-and-place operation, combining with the inverse kinematics theory of the Delta robot, and a mathematical model of robot statia force transmission is established. The force and the output torque of the robot-driven joint are taken as the main performance indexes, and the value of the crank-slider mechanism applied to Delta robot is further measured. The simulation results show that the delta robot driven by the crank slider mechanism can reduce the force and output torque of the driving joint during the picking and discharging operation, and has good practical application value.

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics