A model-free continuous integral sliding mode controller for robust control of robotic manipulators
Abstract
This paper proposes a model-free continuous integral sliding mode controller for robust control of robotic manipulators. The highly nonlinear dynamics of robots and load disturbances cause control challenges. To achieve tracking control under load disturbances and nonlinear parameter variations, the controller is constructed with three continuous terms including an integral term that acts as an adaptive controller. The proposed controller is able to accomplish a non-overshoot transient response, a short settling time, and strong disturbance rejection performance for robotic manipulators. The developed model-free control method is implemented on the PUMA 560 robotic manipulator, and its performance is compared with the proportional-derivative (PD) plus gravity controller. Numerical results under measurement noise and load disturbances are provided in order to show the efficacy, validity, and feasibility of the method.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijra.v12i1.pp54-67
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).