Application of a mathematical model for the Motoman MH-50 industrial robot’s electric drive system

Konstantin Vladimirovich Litsin, Rakhmetolla Rakhmanov, Andrey Vitalievich Tsukanov

Abstract


In recent years, there has been a great interest in the transition to digital and automation services for dangerous and menial working processes. Due to its MH50-35 industrial robot, Motoman's properties allow us to improve the control system of an electric drive for industrial robots. The structure of the electric drive for six-axis robot manipulator performance can be superior to conventional Drive Control servos for motor excitation, and a novel automation system can be implemented for its servo performance. To solve these issues, we propose an optimization strategy that allows us to achieve an increase in productivity and labor safety in the industry, reduce the percentage of defects, guarantee product uniformity, and reduce the prime cost of production of items. Ideal conditions were anticipated using a mathematical model. In this study, by using a statistical model, the ideal conditions were synthesized. The optimization of the control system of an electric drive for industrial robot analysis was carried out, and our findings suggest using this model in industrial production to elucidate problems such as high accuracy and speed indicators.


Keywords


automation; integration of robot technics; mathematical model; metallurgical manufacture; welding;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijra.v12i3.pp221-227

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics