Autonomous navigation system for hexa-legged search and rescue robot using LiDAR

Aris Budiyarto, Sarosa Castrena Abadi, Naufaldo Naufaldo

Abstract


This study proposes an autonomous navigation system for hexapod robots, promising in complex rescue scenarios. The system is tested in simulations under three environments: rocky, cracked flooring, and inclined surfaces. utilizing light detection and ranging (LiDAR) and simultaneous localization and mapping (SLAM), the robot recognizes positions and constructs environmental maps. Implemented via robot operating system, the research successfully applies navigation and mapping using hector_slam. LiDAR mapping yields satisfactory accuracy, with average errors of 0.21% for general mapping and 5.34% for circular paths. Within a 2-meter range, navigation achieves good accuracy, averaging 1.2% error on the x-axis and 0.011% on the y-axis during linear motion. Navigational repeatability improves, with reliable results showing an average error of 4.33 cm on the x-axis and 0.5 cm on the y-axis when returning to starting points. Arena testing with varied obstacles demonstrates successful obstacle traversal. However, in the second test, limitations in hardware, notably the Raspberry Pi 4 CPU usage reaching 97% during navigation, hindered reaching the third target.

Keywords


Hexapod; Navigation; Robot operating system; Robotics; Simultaneous localization and mapping

Full Text:

PDF


DOI: http://doi.org/10.11591/ijra.v13i1.pp50-64

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics