A holistic approach of stability using material parameters of manipulators
Abstract
The demand for a comprehensive method to assess stability using manipulator material parameters is high. Various material parameters, such as the Young modulus, which represents stiffness, damping, and deflection, influence the material of the robot manipulator. The correlation between robot stability and these characteristics remains unclear, as prior studies have not yet examined the collective impact of these parameters on robot manipulators. This work considers two sophisticated manipulators, namely ABB and FANUC. The main objective of this research is to construct a stability model that considers the material properties of stiffness, damping, and deflection to assess the manipulator’s stability level, which may be categorized as low, medium, or high. Furthermore, the presented stability model examines and employs numerous modified and conventional formulas for material properties to determine the level of stability. The findings show that stiffness significantly influences the stability of robot manipulators, a relationship that applies to all the examined manipulators. We also emphasize that the choice of manipulator materials significantly impacts stability maintenance. These findings are expected to enhance the design and advancement of novel robot manipulators within the industry.
Keywords
Damping; Deflection; Robot manipulator; Stability; Stiffness; Young’s modulus
Full Text:
PDFDOI: http://doi.org/10.11591/ijra.v13i4.pp380-390
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).