Camera-based simultaneous localization and mapping: methods, camera types, and deep learning trends
Abstract
The development of simultaneous localization and mapping (SLAM) technology is crucial for advancing autonomous systems in robotics and navigation. However, camera-based SLAM systems face significant challenges in accuracy, robustness, and computational efficiency, particularly under conditions of environmental variability, dynamic scenes, and hardware limitations. This paper provides a comprehensive review of camera-based SLAM methodologies, focusing on their different approaches for pose estimation, map reconstruction, and camera type. The application of deep learning also will be discussed on how it is expected to improve performance. The objective of this paper is to advance the understanding of camera-based SLAM systems and to provide a foundation for future innovations in robust, efficient, and adaptable SLAM solutions. Additionally, it offers pertinent references and insights for the design and implementation of next-generation SLAM systems across various applications.
Keywords
Camera; Deep learning; Map reconstruction; Simultaneous localization and mapping; Visual Odometry
Full Text:
PDFDOI: http://doi.org/10.11591/ijra.v14i2.pp162-172
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).