Conceptual design and simulation study of an autonomous indoor medical waste collection robot

Shawn Shaju, Thomas George, Jithin Kunnath Francis, Manu Joseph, Mervin Joe Thomas


Solid waste management is one of the critical challenges seen everywhere, and the coronavirus disease (COVID-19) pandemic has only worsened the problems in the safe disposal of infectious waste. This paper outlines a design for a mobile robot that will intelligently identify, grasp, and collect a group of medical waste items using a six-degree of freedom (DoF) arm, You Only Look Once (YOLO) neural network, and a grasping algorithm. Various designs are generated before running simulations on the selected virtual model using Robot Operating System (ROS) and Gazebo simulator. A lidar sensor is also used to map the robot's surroundings and navigate autonomously. The robot has good scope for waste collection in medical facilities, where it can help create a safer environment.


artificial neural network; mobile robot; robot operating system; robotic manipulator; ROS navigation stack

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics