Robot Indoor Navigation: Comparative Analysis of LiDAR 2D and Visual SLAM

Hind Messbah, Mohamed Emharraf, Mohammed Saber


Robot indoor navigation has become a significant area of research and development for applications such as autonomous robots, smart homes, and industrial automation. This article presents an in-depth comparative analysis of LiDAR 2D and visual sensor simultaneous localization and mapping (SLAM) approaches for robot indoor navigation. The increasing demand for autonomous robots in indoor environments has led to the development of various SLAM techniques for mapping and localization. LiDAR 2D and visual sensor-based SLAM methods are widely used due to their low cost and ease of implementation. The article provides an overview of LiDAR 2D and visual sensor-based SLAM techniques, including their working principles, advantages, and limitations. A comprehensive comparative analysis is conducted, assesing their capabilities in terms of robustness, accuracy, and computational requirements. The article also discusses the impact of environmental factors, such as lighting conditions and obstacles, on the performance of both approaches. The analysis’s findings highlight each approach’s strengths and weaknesses, providing valuable insights for researchers and practitioners in selecting the appropriate SLAM method for robot indoor navigation based on specific requirements and constraints

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter IJRA Visitor Statistics