Comparative insights into nonlinear PID-based controller design approaches for industrial applications
Abstract
Proportional-integral-derivative (PID) controllers are established in manufacturing due to their simple design, robustness, and wide-ranging industrial applications. However, traditional PID controllers often struggle with the complexity and nonlinearity behaviors inherent in many control systems. As a result, ongoing and future research is focused on developing more stable PID controllers that function efficiently without heavily depending on exact mathematical models, by fine-tuning controller parameters. This study explores several PID-based controllers, including non-linear PID (N-PID), multi-rate non-linear PID (MN-PID), and self-regulating nonlinear PID (SN-PID), assessing and contrasting their performance. The efficacy and robustness of these control mechanisms are substantiated through comparative analyses with the sliding mode control technique, employing experimental data from a pneumatic actuator system to assess performance across varying load scenarios. SN-PID outperforms sliding mode controller (SMC) by 90.97% and PID by 89.90%, followed by MN-PID (85.58% over SMC, 83.86% over PID) and N-PID (78.08% over SMC, 75.49% over PID), while PID offers only 10.63% improvement over SMC. These findings provide valuable insights and recommendations for enhancing controller performance. These insights aim to guide control engineers in selecting the most appropriate N-PID design strategy for specific applications, ultimately improving system performance and operational efficiency in industrial environments.
Keywords
Comparative analysis; Enhanced PID controller; Nonlinearity; Performance analysis; Robustness
Full Text:
PDFDOI: http://doi.org/10.11591/ijra.v14i2.pp191-203
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Robotics and Automation (IJRA)
ISSN 2089-4856, e-ISSN 2722-2586
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).